
Mixed Symbolic Representations for Model Checking Software Programs

Zijiang Yang 1 Chao Wang 2 Aarti Gupta 2 Franjo Ivančić 2

1 Western Michigan University, Kalamazoo, Michigan, USA

2 NEC Laboratories America, Princeton, New Jersey, USA

Abstract

We present an efficient symbolic search algorithm for
software model checking. The algorithm combines multiple
symbolic representations to efficiently represent the tran-
sition relation and reachable states and uses a combina-
tion of decision procedures for Boolean and integer rep-
resentations. Our main contributions include: (1) mixed
symbolic representations to model C programs with rich
data types and complex expressions; and (2) new symbolic
search strategies and optimization techniques specific to se-
quential programs that can significantly improve the scal-
ability of model checking algorithms. Our controlled ex-
periments on real-world software programs show that the
new symbolic search algorithm can achieve several orders-
of-magnitude improvements over existing methods. The
proposed techniques are extremely competitive in handling
sequential models of non-trivial sizes, and also compare
favorably to popular Boolean-level model checking algo-
rithms based on BDDs and SAT.

1 Introduction

Model checking as an automatic verification technique

has been successfully used in the design of complex cir-

cuits and communication protocols [10, 20]. The procedure

normally uses an exhaustive search of the state space of the

considered system to determine whether a specification is

true or false. Various symbolic representation and manipu-

lation techniques [20, 6] have been proposed to improve the

scalability of the procedure. While symbolic model check-

ing has been extensively studied for hardware verification

in industrial settings, its application to analyzing source

code programs written in modern programming languages

(as opposed to specialized modeling languages) is relatively

new [26]. Existing symbolic model checking tools in this

category, including [4, 11, 18], often restrict their represen-

tations in the pure Boolean domain; that is, they extract a

Boolean-level model from the given program and then ap-

ply symbolic decision procedures such as Binary Decision

Diagrams (BDDs) [7] and SAT [12] to perform verification.

Although modeling all variables as bit-vectors is accurate,

such a high precision approach is often not needed and may

generate models of very large sizes.

In [9, 28], Bultan et al. proposed a composite symbolic

representation in an infinite-state model checker by com-

bining the relative strengths of two symbolic representa-

tions: they used BDDs to represent Boolean formulas and

union of polyhedrons to represent formulas in Presburger

arithmetic. Their approach has the advantage of represent-

ing both bit-level and word-level expressions uniformly at

the suitable abstraction levels. However, the technique in

its original form was not aimed at directly handling large

sequential programs written in a general purpose program-

ming language. In [9, 28], one needs to specify the model in

a domain-specific input format called action language, and

the published experimental evaluations of their symbolic al-

gorithms were on relatively small concurrent protocols.

In this paper, we follow the general framework of [9, 28]

in combining multiple symbolic representations. However,

our focus is on improving the scalability of the composite

model checking algorithms, with the application to verify-

ing source code level sequential programs. The number of

program variables is often orders-of-magnitude larger than

in previous studies [9]. We differentiate our work from

the prior art primarily in the following aspects: (1) we use

mixed symbolic representations to model programs with

significantly richer data types and more complex expres-

sions; and (2) we develop new search strategies and op-

timizations specific to sequential programs to improve the

scalability of model checking algorithms. In particular, we

derive high-level information of the software model using

a static control flow analysis, and use it to decompose and

minimize the transition relations and to improve the perfor-

mance of symbolic fixpoint computation.

Linear constraint representations and polyhedral analy-

sis have also been used in the verification of real-time and

hybrid systems [15, 3]. These systems are often specified

as timed or hybrid automata with variables of infinite data

types and continuous dynamics. A state set is represented

symbolically as a polyhedron as opposed to a disjunctive

set of polyhedrons; the union of two state sets is approxi-

1-4244-0421-5/06/20.00 ©2006 IEEE 17

2006 4th IEEE/ACM International Conference on Formal Methods and Models for Co-Design

1-4244-0421-5/06/$20.00 ©2005 IEEE 17

mated into their convex union. Since a convex hull is often

expensive to compute, this approach is also known to have

scalability problems. The Symbolic Analysis Laboratory

(SAL) [5] also provides a method for combining different

decision procedures. However, it is different from our ap-

proach in the sense that the different search engines and ver-

ification tools of SAL are glued together loosely at a very

high level by a specification language that models concur-

rent systems in a compositional manner. Word-level model

for C programs has also been used in linear programs where

program variables can range over a numeric domain [1, 2].

However, our work emphasizes the combination of different

modeling techniques such that each domain can be solved

by the most efficient verification engine.

We have implemented the proposed techniques in our C

model checking tool F-SOFT [18, 17], and compare our new

method with the related work [28] in a set of controlled ex-

periments. Our experimental results show that the new al-

gorithm significantly outperforms existing methods in terms

of both CPU time and memory usage. We note that the per-

formance gains achieved by our new method do not come

from improvement of any elementary symbolic engines, but

is a result of combining the individual engines suitably for

the particular task of verifying sequential programs. Our

experimental study also shows that the new algorithm is sig-

nificantly more scalable than pure Boolean-level algorithms

based on BDDs and SAT, indicating that it is advantageous

to raise abstraction levels in symbolic model checking.

The remainder of this paper is organized as follows. We

introduce our software modeling approach in Section 2, by

explaining the transformation from C programs into mixed

symbolic models. We also review the basic set-theoretic

operations on composite formulas and the corresponding

model checking procedure. In Section 3, we present our

software specific optimization techniques in decomposing

and minimizing the transition relation representations. In

Section 4, we present two new strategies for symbolic fix-

point computation in order to exploit the unique character-

istic of sequential models. We give the experimental results

in Section 5 and then conclude in Section 6.

2 Preliminaries

In this section, we review the software modeling in F-

SOFT [18, 17] relevant to the automatic construction of a

mixed symbolic model. F-SOFT is a tool for analyzing

safety properties in C programs, by checking whether cer-

tain labeled statements are reachable from an entry point

of the program. A large set of programming bugs, such as

array bound violations, use of uninitialized variables, mem-

ory leaks, locking rule violations, and division by zero, can

be formulated into reachability problems by adding suitable

property monitors to the given program.

2.1 Software Modeling

F-SOFT begins with a program in full-fledged C and

applies a series of source-to-source transformations into

smaller subsets of C, until the program state is represented

as a collection of simple scalar variables and each pro-

gram step is represented as a set of parallel assignments

to these variables. Below are details relevant to the

construction of a mixed symbolic model (for a comprehen-

sive description of the transformations, please refer to [17]).

Pointer and Memory Modeling. One difficulty in model-

ing C programs lies in modeling indirect memory accesses

via pointers, such as x=*(p+i) and q[j]=y. We replace

all indirect accesses with equivalent expressions involving

only direct variable accesses, by introducing appropriate

conditional expressions as described below.

• To facilitate the modeling of pointer arithmetic, we

build an internal memory representation of the pro-

gram by assigning to each variable a unique natural

number representing its memory address. Adjacent

variables in C program memory (e.g., elements of an

array) are given consecutive memory addresses.

• We perform a points-to analysis [16] to determine, for

each indirect memory access, the set of variables that

may be accessed (called the points-to set). If a pointer

can point to a set of variables at a given program loca-

tion, we rewrite a pointer read as a conditional assign-

ment expression using the numeric memory addresses

assigned to the variables.

• For reads via pointers (pointer-deref), we adopt an

approach from hardware synthesis [24] and for each

pointer variable p create a new variable STAR p rep-

resenting the current value of *p. Each read of *p is

then rewritten as simply a read of STAR p. (Reads of

the form *(p+i) continue to be handled as described

earlier.) To keep STAR p up-to-date, after each assign-

ment p=q we add an inferred assignment STAR p =
STAR q. Furthermore, we need to add aliasing assign-
ments to the model that keep STAR p up-to-date, when

the value may have been changed by an assignment

through *q or some other variable in p’s points-to set.

Unbounded Data, Recursion and Function. The C lan-

guage specification does not bound heap or stack size, but

our focus is on generating a bounded model only1. There-

fore, we model the heap as a finite array, adding a sim-

ple implementation of malloc() that returns pointers into

1Our bounded modeling approach works well on control intensive pro-

grams such as device drivers and embedded software in portable devices,

although it may not be suitable for programs in some application domains

such as scientific computing and memory management.

1818

int foo(int s){
int t=s+2;
if (t>6)

t -= 3 ;
else

t--;
return t;

}

void bar(){
int x=3;
int y=x-3;
while (x<=4){

y++ ;
x = foo(x);

}
y = foo(y);

}
foo

passing
to foo

updating
return
values

bar

parameter

rtr

!rtr

y:=3-3;
0

1 2

3
l := y;

rtr := 1;
l := x;

rtr := 0;
4

t-=3; t := l+2;

6 7

9 t–; 10

5

y := t;

8

y++;

x := t;
t > 6

t ≤ 6

x > 4

x ≤ 4

x := 3;

Figure 1. Sample code and its graph representation

this array. We also add a bounded depth stack as another

global array in order to handle bounded recursion, along

with code to save and restore local state for recursive func-

tions only.

As a running example, Figure 1 shows a simplified con-

trol flow graph structure obtained from the C program on

the left-hand side. The example pictorially shows how non-

recursive function calls are included in the control flow of

the calling function. A preprocessing analysis determines

that function foo is not called in a recursive manner. The

two return points are recorded by an encoding that passes a

unique return location as a special parameter using the vari-

able rtr.

Each rectangle of the right-hand side graph is a basic

block consisting of a set of parallel assignments. The edges

are labeled by conditional expressions, e.g., the transition

from block 1 to block 2 is guarded by x ≤ 4. In case an edge

is not labeled by any condition, the default condition is true.

Finally, block 0 is the entry block and block 8 is the one

that leaves the analysis scope. Formally, the transformations

produce a simplified program that can be represented as a

labeled transition graph.

Definition 1. A labeled transition graph G is a 5-tuple
〈B, E, X, δ, θ〉, wherein

• B = {b1, . . . , bn} is a finite non-empty set of basic
blocks. bs ∈ B is an initial basic block.

• E ⊆ B × B is a set of edges representing transitions
between basic blocks.

• X is a finite set of variables that consists of actual
source variables and auxiliary variables added for
modeling and property monitoring.

• δ : B → 2Σ is a labeling function that labels each

basic block with a set of parallel assignments, where
Σ represents the set of all possible C expressions.

• θ : E → Σ is a labeling function that labels each
edge with a conditional C expression. These condi-
tionals are based on conditions in the C code as part
of if-then-else or while expressions.

We denote a valuation of all variables in X by �x, and

the set of all valuations by X . The state space of the entire

program is Q = B × X . we define a state to be a tuple

q = (�b, �x) ∈ Q. The initial states of the program are in

the initial basic block bs with an arbitrary data valuation,

denoted by Q0 = {(bs, �x)|�x ∈ X} ⊆ Q. The set of parallel

assignments in each bi ∈ B, denoted by δ(bi), can be writ-

ten as x1, . . . , xn ← e1, . . . , en, where {x1, . . . , xn} ⊆ X

and {e1, . . . , en} ⊆ Σ.

For checking reachability properties, we define a sub-

set BErr ⊆ B of blocks to be unsafe; model checking is

then used to prove or disprove that these basic blocks can

be reached. Let q1 → q2 denote a valid transition between

the two states q1, q2 ∈ Q. We define a path in the state

space Q to be a sequence of states (�b0, �x0), . . . , (�bk, �xk)

such that (�b0, �x0) ∈ Q0 and for all 0 ≤ i < k − 1,

(�bi, �xi) → (�bi+1, �xi+1). A counterexample is a path that

ends in an unsafe basic block �bk ∈ BErr .

2.2 Composite Symbolic Formulas

We now review the definition of composite symbolic for-

mulas and the corresponding set theoretic operations. Let Z

be the set of integer numbers and R be the set of real num-

bers. An integer linear constraint is denoted by by aix ≤ b,

where x,ai ∈ Z
n are vectors and b ∈ Z is a scalar. Simi-

larly, a real linear constraint is denoted by ciy ≤ d, where

y, ci ∈ R
n are vectors and d ∈ R is a scalar. A formula in

Presburger arithmetic is an arbitrary Boolean combination

of integer linear constraints, which can be represented as a

union of polyhedrons.

Definition 2 (c.f. [9]). The composite symbolic formula F

is defined as follows,

F := F ∧ F | ¬F | F B
| F I

| FR ,

where F B , F I , and F R are formulas in Boolean logic,
Presburger arithmetic, and Boolean combination of real
linear constraints, respectively.

The above definition extends the one in [9] by introducing

one more elementary formula type, Boolean combination

of linear constraints on reals. A formulation of compos-

ite symbolic representation for arbitrary number of types is

given in [8]. A composite symbolic formula can be put into

1919

the Disjunctive Normal Form (DNF) as follows

F =
∨

i

FB
i ∧ F I

i ∧ FR
i ,

Assume that all expressions in a composite formula are

type-consistent, then subformulas of different types share

no common variables.

Basic Set-Theoretic Operations. The general approach of

carrying out set-theoretic operations on composite symbolic

formulas is to rewrite the operands into DNF, process the

corresponding subformulas with suitable engines, and as-

semble the result back into DNF. One can use CUDD [25]

to represent Boolean formulas, the Omega library [22] to

represent Presburger formulas, and the Parma Polyhedral

Library [13] to represent linear constraints on reals. These

underlying manipulation packages all support set-theoretic

operations such as union (∨), conjoin (∧), negation (¬), and

quantification (∃).

The union of two composite formulas is simply the

union of their subformulas. The conjunction of two com-

posite formulas is the union of pair-wise conjunctions of

their subformulas. Let F =
∨nF

i=1 FB
i ∧ F I

i ∧ FR
i and

G =
∨nG

j=1 GB
j ∧GI

j ∧GR
j ; then

F ∧G =

nF ,nG∨

i=1,j=1

(FB
i ∧GB

j) ∧ (F I
i ∧GI

j) ∧ (FR
i ∧GR

j) .

Since there is no common variable shared by F B , F I , and

FR, subformulas in different domains do not interfere with

each other. The negation of a composite formula can be

implemented in a way similar to conjunction. Note that the

DNF representation is not canonical, and there are heuristic

algorithms [9] to make the result more compact. Although

the number of mixed terms can be as large as (nF ×nG) for

conjunction (3nF for negation), such a worst-case blowup

rarely happens in our application domain.

Existential quantification distributes not only over

unions (which is true in the pure Boolean domain) but also

over conjunctions of subformulas of different types; that is,

∃vB, vI , vR . F =

nF∨

i=1

(∃vB . FB
i)∧(∃vI . F I

i)∧(∃vR . FR
i) ,

due to the fact that vB , vI , and vR are disjoint sets.

Symbolic Representation of the Model. Let P denote

the set of program counter (PC) variables for encoding the

set B of basic blocks (or program locations);2 then P and

X form the complete set of state variables of the model.

2P consists of �log |B|� Boolean variables in a pure bit-level represen-

tation, or a single integer variable in a word-level representation.

Their next-state values are represented by the primed ver-

sion P ′ and X ′. The verification model is represented by

〈T, I〉, wherein T (P, X, P ′, X ′) is the transition relation

and I(P, X) is the initial state predicate. An evaluation

of the characteristic function T (�b, �x,�b′, �x′) is true if and

only if there is a transition from the state (�b, �x) to the state

(�b′, �x′). Similarly, the evaluation of function I(�b, �x) is true

if and only if (�b, �x) is an initial state.

We choose to represent expressions related to PC vari-

ables as Boolean formulas. That is, we allocate a finite set

of Boolean variables P = {p1, p2, ..., pk} so that, for in-

stance, (P = 5) is encoded as (p3∧¬p2∧p1). This is based

on the observation that formulas involving the PC variable

are often control-intensive, for which the representation of

linear constraints is ill-suited. On the other hand, we use

integer and real linear constraints to model the data-path.

Individual expressions in δ(bi) such as (x′
k = eik) are rep-

resented either by a Boolean formula, Presburger formula,

or polyhedrons on real, depending on the type of the vari-

able x′
k.

Reachable states are also represented disjunctively as the

union of subformula. For instance, given a set of initial val-

ues {x1 = e01; . . . ; vm = e0m} and the entry block bs, we

have the initial predicate I := (P = bs)∧
∧m

k=1(xk = e0k).
Given a composite formula representing an arbitrary state

set, we can easily partition the conjuncts and convert it to

DNF.

Handling Non-Linear Operators Since non-linear oper-

ators on integer and real variables cannot be modeled by

polyhedrons, they need special treatment. If all operands

are of integer type and of bounded size, we can model a non-

linear operation as Boolean-level operations through the in-

stantiation of predefined logic components such as multi-

pliers. However, not all non-linear operations can be han-

dled this way: if a bounded integer variable x is treated

as a fixed-length bit-vector, then (1) any operation on x

must be treated as a bit-vector operation; and (2) any other

operand of the same bit-vector operation must be treated

as a bit-vector. Therefore, the definition of bit-vector vari-

able is transitive. If a non-linear operation involves both

fixed-length bit-vectors and unbounded integers, it cannot

be modeled in pure Boolean logic. The requirement of dis-

allowing common variables shared among different sym-

bolic engines clearly differentiates this modeling approach

from the Nelson-Oppen framework for cooperating decision

procedures [21].

If the above requirement is not satisfied, we resort to ap-

proximate modeling. A straightforward way is to assume

that the result of a non-linear operation takes an arbitrary

value. For instance, the assignment xk ← xi ∗ xj becomes

xk ← w, where w is a nondeterminstic pseudo input vari-

able of the suitable type. During post-condition computa-

2020

tion w will be existentially quantified out, therefore model-

ing the fact that xk can take an arbitrary value. If an upper

and/or lower bound on the values of its operands is known,

we can improve the approximation by estimating the output

value range of the non-linear operation. For instance, given

1 ≤ xi ≤ 4 and 2 ≤ xj ≤ 5, we can impose the additional

constraint 2 ≤ w ≤ 20. The bound information of vari-

ables xi and xj may come from a range analysis [17], which

determines a conservative value range of each variable in

the given program. Also, the user can ”sharpen” the over-

approximation with the help of pre- and post-conditions (or

asserts and assumes) in such cases.

3 Mixed Symbolic Transition Relations

Now we present our software specific optimizations that

decompose and simplify mixed symbolic representations of

the transition relation and the reachable state set.

3.1 Disjunctive Transition Relations

From the labeled transition graph (LTG) of a given pro-

gram, we construct the symbolic representation of its veri-

fication model as follows. We define transition relation of

the entire model as

T =
∨

(bi,bj)∈E tdi ∧ tcij ,

where tcij denotes the transition of control flow from bi to bj ,

and tdi denotes the data assignments inside block bi. Given

a transition from bi to bj under the condition θ(bi, bj), the

transition relation tcij is defined as follows,

tcij = (P = i) ∧ (P ′ = j) ∧ θ(bi, bj)

Given a block bi ∈ B, tdi describes the conjunction of all

assignments in δ(bi), and therefore is defined as follows,

tdi = (P = i) ∧

|X|∧

k=1

(x′
k = eik)

Inside a block bi, for each variable xk ∈ X , the elementary

transition relation is x′
k = eik such that

eik =

{
e , if (xk := e) ∈ δ(bi) ,

xk , otherwise

A disjunctively partitioned T is naturally suited for se-

quential software programs. Let T =
∨

Tij and Tij =
tdi ∧ tcij ; then Tij corresponds to a transition in the LTG.

Tij = (P = i) ∧ (P ′ = j) ∧ θ(bi, bj) ∧

|X|∧

k=1

(x′
k = eik)

Note that the partitioning of T into Tij is independent of

any symbolic representation. When we use composite for-

mulas to represent each Tij , there will be another level of

decomposition which further partitions each component Tij

into individual conjuncts based on their formula types. It is

worth pointing out that these two levels of decomposition

are different, and indeed complementary.

Given a transition relation T and a set Z of states, the

post-condition or image of Z with respect to T consists of

all the successors of Z in the state transition graph. Let

f(X/X′) denote the substitution of X ′ variables in f by the

corresponding X . Then

post(T, Z) = (∃X, P . T ∧ Z)(X/X′,P/P ′) .

The post-condition computation can be decomposed into a

set of easier steps as follows,

post(T, D) =
(
∃X, P .

∨
(bi,bj)∈E Tij ∧D

)

(X/X′,P/P ′)

=
∨

(bi,bj)∈E (∃X, P . Tij ∧D)(X/X′,P/P ′)

Computing post-condition subsets individually is often

more efficient than computing the entire set on a monolithic

transition relation, since it reduces the peak size of symbolic

representations for intermediate products.

Reachability analysis is a least fixpoint computation,

R = μZ . I ∪ post(T, Z) .

Here μ denotes the least fixpoint and Z is an auxiliary

variable for iteration. Reachability fixpoint computation

starts from the initial state set and repeatedly adds the post-

condition of already reached states until convergence.

3.2 Simplifying Transition Relations

The main reason for state explosion inside symbolic

model checking is the exponential dependency of the state

space on the number of state variables of the model. For

many realistic C programs, the number of variables of the

verification model can easily be in the hundreds (including

those added for modeling indirect memory accesses, func-

tion calls, and encoding properties), which is well above the

capacity of state-of-the-art BDD and polyhedral analysis

algorithms. Although all elementary decision procedures

can dynamically simplify representations—variable sifting

in CUDD and simplify in the Omega library—they are

time-consuming in the presence of many variables.

The symbolic model checking algorithm as outlined up

to this point still suffers from performance problems. In

a normal reachability fixpoint computation, it is often the

case that both the number and the size of polyhedrons in the

2121

code fragment live variables

L1: x = y = 0; { }

L2: x = 7; { }

L3: s = x; { x }

L4: y = 8; { s }

L5: s = s + y ; { s, y }

L6: if (s) goto L2; { s }

L7: ERROR: { }

Figure 2. An example of live variables.

reachable state set quickly become too large for the under-

lying polyhedral libraries.

Our observation is that most variables in sequential pro-

grams are inherently local, and therefore should be consid-

ered as state-holding only when they affect the control flow

or the data-path. In our previous work [27], we have suc-

cessfully exploited this characteristic of sequential program

to simplify BDD-based image computation, and have ob-

tained significant performance improvement. Here we ex-

tend the technique to simplify the transition relation as well

as reachable state sets for model checking using mixed rep-

resentations.

Definition 3. Variable x ∈ X is live in block bi ∈ B if and
only if there exists an execution path from bi to bj such that,

• x appears either in θ(bj , bk) or in the right-hand side
of an assignment in δ(bj);

• x does not appear in the left-hand side of an assign-
ment in any block between bi and bj along the path.

In our reachability procedure, we associate a reachable state

subset with each basic block (i.e., a disjunctive partition of

the reachable state set). From the above definition, it is clear

that if x is not live in block bi, there is no need to record its

value in the associated reachable state subset.

Locally defined variables are live only inside the pro-

gram scopes in which they are defined; these variables can

be identified syntactically. However, we note that even

globally defined variables may not be live (according to our

definition) at all basic blocks. We use the code fragment in

Fig. 2 to show that global variables are often live at a lim-

ited number of locations. Assume that x, y, and s are global

variables but do not appear elsewhere in the program. Then

none of them are live at program locations 1 and 2 since

their values will not affect the control flow and data-path.

Variable x is considered live at L3 because its value will

be assigned to s, and similarly for y at L5. We consider s

as live at L6 because its value may affect the control flow.

(Fig. 2 is for illustration purposes only.)

Finding the set of blocks in which variable x is live is a

standard program analysis problem. We use the live vari-

able analysis for the following optimization. During the

construction of the transition relation Tij , if a certain vari-

able xk is not alive in the destination block bj , we remove

x′
k = eik from the transition relation component since the

value of xk would be immaterial in the destination block.

The next-state variable x′
k in this case can assume an arbi-

trary value thereby providing an abstraction of the search

state space. Note that the live variable analysis can achieve

significantly more reduction of the transition relation size

than a simple program slicing. In Fig. 2, for instance, we

can remove the implicit assignments x′ = x from the tran-

sition relations at Lines 4-6 where x is not live; however,

a property dependent program slicing along cannot remove

them. Our experience shows that in practice, live variables

with respect to any individual block comprise typically less

than 30% of the entire program variables in X .

In our previous work [27], the live variable information

was used to existentially quantify dead variables out of im-

age results at each iteration. In this paper, however, we use

live variables to directly simplify the mixed symbolic rep-

resentations of individual transition relation components.

This prevents transition relations of dead variables from be-

ing involved in the often costly post-condition computation.

Existential quantification of dead variables from the post-

condition results, as was done in [27], is avoided since dead

variables never appear in the result in the first place.

Removing dead variables not only reduces the sizes of

the symbolic representations, but also leads to a poten-

tially faster convergence of reachability analysis. Take the

code fragment in Fig. 2 as an example. With the live vari-

able based simplification, one can declare the termination

of reachability fixpoint computation after going from L1

through L6 only once. This is because the post-condition

of L6 is (P = 2 ∧ s = 15), which has already been cov-

ered by (P = 2), the post-condition of L1 (wherein s can

take any value). However, if x and y are assumed to be live

everywhere, we will have much larger polyhedrons to rep-

resent in the reachable states at each location. In addition,

we can no longer declare convergence after L6, since the

post-condition (P = 2 ∧ s = 15 ∧ x = 7 ∧ y = 8) is not

covered by (P = 2∧ x = 0∧ y = 0), the post-condition of

L1. As a result, we need a few more iterations in order to

declare convergence.

4 Specialized Symbolic Search Strategies

Let Ri−1 and Ri be two reachable state sets at two con-

secutive steps; in computing Ri+1, one can use post(T, Ri
\

Ri−1) instead of post(T, Ri) if the symbolic representation

of (Ri
\ Ri−1) is smaller than that of Ri. In BDD based

symbolic model checking, the set Ri
\ Ri−1 is called the

frontier set [23]. However, in order to detect convergence,

one still needs to store the entire reachable state set Ri (in

2222

2

1

6

7

9

83

4

5

error=1

Figure 3. Removing back edges to break cycles

order to stop as soon as Ri+1 = Ri).

We have observed that maintaining the entire reachable

state set Ri at every iteration is costly. In symbolic model

checking, it is a known fact that the size of symbolic rep-

resentation of Ri often increases in the middle stages of

fixpoint computation and then decreases when it is close

to convergence. The case becomes even more severe with

polyhedrons in our mixed representations, which is largely

due to the fact that composite formula representation is

not canonical — after being propagated through various

branching and re-converging points, polyhedrons are frag-

mented more easily into smaller pieces.

4.1 The Frontier Strategy

We propose a specialized symbolic search strategy called

REACH FRONTIER to improve reachability fixpoint com-

putation. The idea is to avoid storing the entire reachable

state set at each iteration, but use an augmented frontier set

to detect convergence. In reachability computation, a fron-

tier set consists of all the new states reached at the previous

iteration; that is, F 0 = I, F i = post(T, F i−1) \ F i−1.

For straight-line code (without loops and backward gotos in

the LTG), we can declare convergence when F i becomes

empty (and the set is guaranteed to become empty after |B|

iterations). However, in the presence of loops (cycles), the

frontier set may never become empty—an example would

be any program with an infinite loop.

In the presence of cycles, we need to identify a set of

back edges Eback ⊆ E in the LTG, whose removal will

make the graph acyclic (an example is given in Fig. 3). Let

Spa ⊆ Q denote the state subspace associated with tail

blocks of those back edges. In Fig. 3, for instance, the sub-

space is represented by Spa = (P = 5 ∨ P = 7 ∨ P = 8).
If we record all the reached states falling inside Spa, which

is S = R∩Spa, then the emptiness of the set (F \R∩Spa)
can be used to detect convergence.

Algorithm 1 REACH FRONTIER(T ,I ,Err,Spa)

1: F = I;

2: S = I ∩ Spa;

3: while F �= ∅ do
4: if (F ∩ Err) �= ∅ then
5: return false;

6: end if
7: F = (post(T, F) \ F) \ S;

8: S = S ∪ (F ∩ Spa);
9: end while

10: return true;

Our new reachability procedure in Algorithm 1 takes as

parameters the symbolic model 〈T, I〉, the state subspace

Err = BErr × X associated with a set of error blocks

BErr, as well as the state subspace Spa associated with tail

blocks of back edges Eback . We use set S to represent the

subset of already reached states that falls inside Spa. When

we define Spa = true, the algorithm becomes the same as

the ordinary reachability analysis procedure.

Finally, we note that even the ordinary reachability

analysis procedure may not converge since program veri-

fication in general is undecidable in the polyhedral abstract

domain. However, what we can guarantee is that, our Fron-

tier procedure is able to terminate as long as the ordinary

procedure terminates.

Theorem 1. Let D be the longest path starting from the en-
try block in the LTG after the removal of back edges. Then
REACH FRONTIER terminates with at most D more itera-
tions after the conventional reachability analysis procedure
terminates.

Note that by definition, we have S = R∩Spa and there-

fore Si = Ri
∩ Spa. It follows that if Ri

\ Ri−1 is empty,

then Si
\ Si−1 is also empty. The set F i may not become

empty immediately after Ri
\Ri−1, but it will never add any

new state inside Si. Therefore, the frontier set F is guaran-

teed to become empty after going through all the forward

edges one more time. Also note that if we remove all the

back edges in Eback, the LTG becomes a directed acyclic

graph with a maximal depth D.

4.2 The Lock-Step Strategy

Our frontier search strategy can significantly reduce the

peak memory usage in the middle stages of fixpoint com-

putation. However, there are still cases for which even the

mixed representation of F i becomes too large. When an

LTG has multiple cycles of different lengths and the cycles

are not well synchronized at the re-convergence points, new

states (in frontier set) may easily scatter in a large number

of basic blocks. Since this often means a larger number of

2323

polyhedrons (and more linear constraints), the gain by our

frontier strategy gradually evaporates.

To address this problem, we propose another search

strategy called REACH LOCKSTEP, which is an improve-

ment of the frontier procedure in Algorithm 1. The idea

is to synchronize multiple cycles by controlling the time

when new states are propagated through back edges. For

this we bi-partition the transition relation T into Tf and Tb,

such that Tf consists of forward edges only and Tb con-

sists of back edges only. We conduct reachability analysis

in lock-step, by first propagating the frontier set through Tf

until convergence, and then feeding back the set R ∩ Spa

through Tb. Note that this may introduce some stuttering

steps, where propagation from some cycles is delayed.

Algorithm 2 REACH LOCKSTEP(Tf ,Tb,I ,Err,Spa)

1: F = I;

2: S = Snew = (I ∩ Spa);
3: while F �= ∅ do
4: if (F ∩ Err) �= ∅ then
5: return false;

6: end if
7: F = (post(Tf , F) \ F) \ S;

8: S = S ∪ (F ∩ Spa);
9: Snew = Snew ∪ (F ∩ Spa);

10: if F = ∅ then
11: F = post(Tb, Snew) \ S;

12: Snew = ∅;
13: end if
14: end while
15: return true;

The new procedure in Algorithm 2 takes as inputs the

symbolic model 〈Tf , Tb, I〉, the state subspace Err asso-

ciated with error blocks, as well as the state subspace Spa

associated with tail blocks of back edges. It terminates only

when no new state is reached by post-condition computa-

tions on both Tf and Tb. By synchronizing the propaga-

tion through back edges, we can significantly reduce the

size of F . Note that with the lock-step strategy, we may

get longer counterexamples due to the addition of stutter-

ing steps. This may be a disadvantage considering the fact

that counterexamples may take more iterations to generate.

However, we shall show that there are some examples on

which the frontier strategy takes much longer runtime or

may not even finish in the allocated time; in these cases, the

lockstep strategy becomes a viable option.

5 Experiments

We have implemented the new techniques on the F-

SOFT verification platform [18, 17]. Our implementation

builds upon CUDD [25], the Omega library [22], and the

Parma Polyhedral library [13]. At this time the integration

with CUDD and Omega has been completed, whereas the

interface to Parma is still work in progress. We are able to

evaluate the proposed techniques by comparing to the best

known composite model checking algorithm in [28], as well

as pure Boolean level algorithm using BDDs and SAT. Our

experiments were conducted on a workstation with 2.8 GHz

Xeon processors and 4GB of RAM running Red Hat Linux

7.2. We set the CPU time limit to one hour for all runs.

Our benchmarks are control intensive C programs from

public domain as well as industry (e.g., device drivers, em-

bedded software of portable devices). For all test examples,

we check reachability properties expressing the absence of

out-of-bound array and pointer accesses. Among the eleven

test cases, bakery is a C model of Leslie Lamport’s bakery

protocol; tcas is an air traffic control and avionic system;

ppp is C public domain implementation of the Point-to-

Point protocol. The examples starting with mcf are from an

industry embedded software of a portable device, for which

we only have the verification models but no source code in-

formation (such as the lines of C code). The ftpd examples

are from the FTP daemon code in Linux.

5.1 Comparing Search Strategies

First, we evaluate the proposed techniques by compar-

ing the performance of composite model checking with and

without the new features (i.e., program-specific optimiza-

tions and search strategies). We note that without all these

new features, our implementation of the underlying com-

posite model checking algorithm becomes comparable to

the action language verifier of [28].

The results are given in Table 1, wherein for each test

example, we list in Columns 1-4 the name, the lines of C

code, the number of variables, and the number of blocks.

Columns 5-8 compare the runtime performance of the four

implementations, where old denotes the baseline algorithm,

live denotes the live variable based simplification, front de-

notes the one augmented with frontier search strategy, and

lstep denotes the lockstep strategy. Columns 9-12 compare

the peak number of linear equalities and inequalities used in

Omega library. We omit the peak BDD sizes since for these

examples the BDD sizes are all very small.

Of the 11 examples, the baseline reachability algorithm

can complete only 2, while the one with our optimizations

and the new lock-step strategy completes all. For the cases

where all methods can do a complete traversal, the perfor-

mance gained by our optimizations can be several orders-

of-magnitude. The results clearly show that exploiting se-

quentiality and variable locality is a key to making symbolic

software model checking scalable. The comparison of the

number of linear constraints at each iteration shows that our

proposed techniques are also extremely effective in reduc-

2424

Table 1. Comparing search strategies in reachability fixpoint computation
Test Program Total CPU Time (s) Peak GEQ Formulas

name loc vars blks old live front lstep old live front lstep

bakery 94 10 26 T/O 755 35 13 - 1518 264 128

tcas-1a 1652 59 133 T/O T/O T/O 374 - - - 17656

tcas-any 1652 65 215 T/O T/O T/O 415 - - - 14920

ppp 2623 91 720 T/O T/O T/O 51 - - - 3782

mcf1 as - 92 92 2475 57 3 2 3394 355 45 45

mcf2 afr - 126 155 T/O 91 7 5 - 344 110 165

mcf3 mrr - 80 299 T/O 79 4 4 - 407 55 55

bftpd useringrp 1115 242 13 12 1 1 1 829 6 4 4

bftpd chkuser 2584 591 175 M/O 59 20 20 - 187 57 57

bftpd chkshell 2931 674 364 M/O 576 47 48 - 995 358 358

bftpd chkpasspwd 1166 547 463 M/O 681 760 760 - 579 2362 2362

ing the size of the mixed symbolic representation.

5.2 Comparison with Boolean Engines

We also give the comparison of mix-lockstep against pure

Boolean-level symbolic engines, including BDD-based

model checking and SAT-based bounded model checking.

Both of these two Boolean level engines are based on ma-

tured techniques and have been fine-tuned for handling se-

quential programs [17, 27]. In particular, the BDD-based

algorithm also uses decomposition and simplification based

on live variables.

The results are given in Table 2. Columns 1-3 give the

name of the program, the number of bit variables in the

Boolean model, and the sequential depth at which point

all given properties can be decided. Columns 4-6 show

for each of the three methods whether verification can be

completed, and the maximum reached depth for the incom-

plete cases. Note that the BDD-based methods may time

out before the transition relation is built, in which cases the

maximum reached depth is 0. Finally, Columns 7-9 list the

run time of each method in seconds. Sometimes the com-

parison may not be entirely fair, since BDD/SAT models

non-linear operations as bit-vector operations (maximum 32

bits), while the new method may approximate them. When

approximation happens, we put a star in the last column.

Table 2 shows that our new algorithm mix-lockstep is the

only method that can complete traversal in all examples.

This, we believe, is due to the fact that mix-lockstep mod-

els the different behaviors of the system at the right levels

of abstractions. Note that our method is significantly differ-

ent from static analysis based on the polyhedral abstract do-

main [14]. Although both methods use polyhedral represen-

tations, we are conducting an exact state space exploration

– none of our results relies on convex hull based approxi-

mation or widening; when a property fails, we can generate

a concrete counterexample trace.

We also checked the same test examples with a counter-

example driven predicate abstraction algorithm [19]. Since

the predicate abstraction procedure was designed for check-

ing one property at a time, whereas all the other methods

used in our experimental study can check multiple proper-

ties simultaneously in one run, a fair comparison was pos-

sible only on the first four examples (each of which has a

single property). The results are as follows: (1) predicate

abstraction completed bakery, tcas-1a, and tcas-any in 1

second, 137 seconds, and 836 seconds, respectively; (2) on

ppp it timed out after one hour. This indicates that our exact

composite reachability computation algorithm has already

better performance than an advanced predicate abstraction

procedure. Note that the procedure in [19] builds upon a

pure Boolean-level model. We believe it is possible to com-

bine predication abstraction with our mixed symbolic algo-

rithm, which we leave as a future work.

6 Conclusions

We have presented a symbolic model checking algorithm

that combines multiple decision procedures for verifying

sequential programs. We apply mixed symbolic represen-

tations to programs with significantly richer data types and

more complex expressions, and develop optimizations and

new symbolic search strategies to improve the scalability of

model checking algorithms. Our experimental results show

that these proposed techniques can significantly reduce the

run time and peak memory usage required in fixpoint com-

putation. It also compares favorably to pure Boolean level

search engines using BDDs and SAT. For future work, we

want to explore various approximate state space traversal al-

gorithms and extend our method to handle concurrent soft-

ware programs.

References

[1] A. Armando, M. Benerecetti, and J. Mantovani. Model

checking linear programs with arrays. Electr. Notes Theor.

2525

Table 2. Comparing Mix-LockStep with Pure Boolean-level algorithms
Test Program Completed CPU Time (s) non

name bvars depth bdd-mc sat-bmc mix-ls bdd-mc sat-bmc mix-ls -lin

bakery 84 172 Y (68) Y 2 T/O 13

tcas-1a 307 119 Y (103) Y 433 T/O 374

tcas-any 362 181 (103) (100) Y T/O T/O 415

ppp 1435 132 Y (84) Y 687 T/O 51

mcf1 as 500 192 Y (98) Y 150 T/O 2 �

mcf2 afr 508 211 Y (60) Y 110 T/O 5

mcf3 mrr 1212 148 Y (43) Y 190 T/O 4

bftpd useringrp 1163 11 Y Y Y 1 1 1

bftpd chkuser 5000 75 (0) (70) Y T/O T/O 20

bftpd chkshell 7849 94 (0) (44) Y T/O T/O 48

bftpd chkpasspwd 2826 147 (10) (13) Y T/O T/O 760

Comput. Sci., 144(3):79–94, 2006.
[2] A. Armando, J. Mantovani, and L. Platania. Bounded model

checking of software using smt solvers instead of sat solvers.

In SPIN, pages 146–162, 2006.
[3] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate

reachability analysis of piecewise-linear dynamical systems.

In Hybrid Systems: Computation and Control, pages 21–31.

Springer-Verlag, 2000. LNCS 1790.
[4] T. Ball and S. K. Rajamani. Bebop: A symbolic model

checker for Boolean programs. In Proc. of the SPIN Work-
shop, pages 113–130. Springer-Verlag, 2000. LNCS 1885.

[5] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre,

H. Rueb, J. Rushby, V. Rusu, H. Saidi, N. Shankar,

E. Singerman, and A. Tiwari. An overview of SAL. In Proc.
of the Fifth Langley Formal Methods Workshop, Jan. 2000.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic

model checking without BDDs. In Tools and Algorithms
for Construction and Analysis of Systems, pages 193–207,

Mar. 1999. LNCS 1579.
[7] R. E. Bryant. Graph-based algorithms for Boolean function

manipulation. IEEE Trans. on Computer, C-35(8):677–691,

Aug. 1986.
[8] T. Bultan, R. Gerber, and C. League. Composite model

checking: Verification with type-specific symbolic represen-

tations. ACM Transactions on Software Engineering and
Methodology, 9(1):3–50, Jan 2000.

[9] T. Bultan and T. Yavuz-Kahveci. Action language verifier.

In International Conference on Automated Software Engi-
neering, pages 382–386, 2001.

[10] E. Clarke, O. Grumberg, and D. Peled. Model checking.

MIT Press, 2000.
[11] E. Clarke, D. Kroening, and F. Lerda. A tool for checking

ANSI-C programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 168–176. Springer,

2004. LNCS 2988.
[12] M. Davis, G. Logemann, and D. Loveland. A machine pro-

gram for theorem proving. Communications of the ACM,

5:394–397, 1962.
[13] T. C. S. Group. The Parma Polyhedra Library. University

of Parma, Italy, http://www.cs.unipr.it/ppl/.
[14] N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification

of real-time systems using linear relation analysis. Formal
Methods in Systems Design, 11(2):157–185, 1997.

[15] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: the

next generation. In IEEE Real-Time Systems Symposium,

pages 56–65, 1995.
[16] M. Hind and A. Pioli. Evaluating the effectiveness of pointer

alias analyses. Sci. Comput. Program., 39(1):31–55, 2001.
[17] F. Ivančić, I. Shlyakhter, A. Gupta, M. Ganai, V. Kahlon,

C. Wang, and Z. Yang. Model checking C programs using

F-Soft. In IEEE International Conference on Computer De-
sign, pages 297–308, San Jose, CA, Oct. 2005.

[18] F. Ivančić, Z. Yang, I. Shlyakhter, M. Ganai, A. Gupta,

and P. Ashar. F-SOFT: Software verification platform.

In Computer-Aided Verification, pages 301–306. Springer-

Verlag, 2005. LNCS 3576.
[19] H. Jain, F. Ivančić, A. Gupta, and M. Ganai. Localization

and register sharing for predicate abstraction. In Tools and
Algorithms for the Construction and Analysis of Systems,

pages 394–409. Springer-Verlag, 2005. LNCS 3440.
[20] K. L. McMillan. Symbolic Model Checking. Kluwer Acad-

emic Publishers, Boston, MA, 1994.
[21] G. Nelson. Combining satisfiability procedures by equality-

sharing. Contemporary Mathematics, 29:201–211, 1984.
[22] W. Pugh and et al. The Omega Project. University of Mary-

land, http://www. cs.umd.edu/projects/omega/.
[23] R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and

C. Pixley. Efficient BDD algorithms for FSM synthesis and

verification. Presented at IWLS95, May 1995.
[24] L. Séméria and G. D. Micheli. Spc: synthesis of pointers in

c: application of pointer analysis to the behavioral synthe-

sis from c. In International Conference on Computer-aided
design, pages 340–346, 1998.

[25] F. Somenzi. CUDD: CU Decision Diagram Package. Uni-

versity of Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.
[26] W. Visser, K. Havelund, G. Brat, and S. Park. Model check-

ing programs. In International Conference on Automated
Software Engineering, pages 3–12, 2000.

[27] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctive

image computation for emebedded software verification. In

Design, Automation and Test in Europe (DATE’06), Munich,

Germany, Mar. 2006.
[28] T. Yavuz-Kahveci, C. Bartzis, and T. Bultan. Action lan-

guage verifier, extended. In Computer Aided Verification,

pages 413–416. Springer-Verlag, July 2005. LNCS 3576.

2626

