
Automatic Discovery of Transition Symmetry in
Multithreaded Programs using Dynamic Analysis⋆

Yu Yang1, Xiaofang Chen1, Ganesh Gopalakrishnan1, and Chao Wang2

1 School of Computing, University of Utah, Salt Lake City, Utah, USA
2 NEC Laboratories America, Princeton, New Jersey, USA

Abstract. While symmetry reduction has been established to be an important
technique for reducing the search space in model checking, its application in
concurrent software verification is still limited, due to the difficulty of specify-
ing symmetry in realistic software. We propose an algorithmfor automatically
discovering and applying transition symmetry in multithreaded programs during
dynamic model checking. Our main idea is using dynamic program analysis to
identify a permutation of variables and labels of the program that entails syntactic
equivalence among theresidual code of threadsand to check whether the local
states of threads are equivalent under the permutation. Thenew transition symme-
try discovery algorithm can bring substantial state space savings during dynamic
verification of concurrent programs. We have implemented the new algorithm
in the dynamic model checkerInspect. Our preliminary experiments show
that this algorithm can successfully discover transition symmetries that are hard
or otherwise cumbersome to identify manually, and can significantly reduce the
model checking time while usingInspect to examine realistic multithreaded
applications.

1 Introduction

Dynamic model checking [1–3] methods have proven promisingfor revealing errors in
the implementation of real-world concurrent programs. They work on real applications
and libraries, and side-step the high complexity of model construction and state capture
by concretely executing the programs, and replaying the executions for covering the dif-
ferent thread interleavings. While several techniques have been proposed for reducing
the complexity of dynamic model checking [4–6], one important technique – namely
symmetry reduction– has yet to be fully explored during dynamic model checking.

In contexts where models of the systems are verified, symmetry reduction has al-
ready been shown highly beneficial for reducing the search space [7–9]. The basic ap-
proach taken in these works is finding and exploring the statespace of aquotienttran-
sition system defined by an underlying equivalence relation– usually over the system
states. This approach does not work well during dynamic model checking because the
“state” consists of the runtime state of the threads being subject to concrete execution:
capturing and canonicalizing such states is practically difficult or impossible. In dy-
namic model checking of concurrent programs, transition symmetry [10] has been used

⋆ Supported in part by NSF award CNS-0509379, CCF-0811429, and Microsoft.

as an effective way of pruning of the search space; however, it requires the user to pro-
vide a permutation function in order to check whether two transitions are symmetric.
In this paper, we present an algorithm to automate transition symmetry discovery by
employing dynamic analysis. To our best knowledge, this is the first approach to auto-
mate transition symmetry discovery for the dynamic verification of realistic concurrent
programs.

We first note that purely static analysis based approaches are often insufficient for
detecting symmetries across threads. With static analysis, one may be tempted to con-
clude symmetry at the starting points of the threads that arecreated out of the same
thread routine with the same parameters. However, this is a very limiting criterion. Al-
though in practice multiple threads are often created out ofthe same thread routine, it
is quite common that the threads shared the same routine are fed with different param-
eters for various purposes. Furthermore, light-weight methods such as static analysis
cannot infer in general whether the threads are still symmetric after steps of execution,
even if threads are spawned from the same routine with the same parameters. Hence, to
maximize symmetry reduction, we need to examine the local states of threads during
the concrete executions of programs.

As system calls are widely used in multithreaded C programs,it is difficult to pre-
cisely capture and compare the local states of threads whileboth the program under test
and the dynamic verifier execute as peer user-level applications. Java PathFinder [11]
and SPIN [12] capture the states of multithreaded programs by interpreting the execu-
tion. Interpretation requires the model checker to have itsown stubs for library routines.
As it is difficult or impossible to create stubs for system calls (e.g., file operations) that
are widely used among applications written in C, in general we cannot take the inter-
pretation approach to examine multithreaded applicationswritten in C.

In this paper we propose a new algorithm for revealing symmetry in multithreaded
programs and show how it can be combined seamlessly with dynamic partial order re-
duction (DPOR) [4] for more efficient dynamic model checking. To overcome the state
capture problem, we use dynamic program analysis to examinethe local state of thread
and to discover symmetry in multithreaded programs. That is, instead of statically ana-
lyzing the program, we conduct program analysis during the concrete execution of the
program.

In more detail, we compute theresidual codeof threads while executing the pro-
gram. The residual code of a threadτ at a states is the code that may be executed by
τ from s beforeτ ’s termination. If we find that the residual code of threads can be put
into syntacticequivalence under a bijection over thread local variable names and label
names, we further check whether the local states of threads can also be put into equiva-
lence under this bijection. We shall prove that, in a states of a multithreaded program,
if the residual code of two threads ats are syntactically equivalent under a certain bijec-
tion of thread local variables and labels, and the local states of threads ins are identical
under the same bijection, then there is a transition symmetry for the enabled transitions
of the two threads ats (details in Section 3). Since transition symmetries inducean
equivalence relation on states of the concurrent system, during model checking, we can
discard a states, or backtrack in the context of stateless search, if an equivalent state
s′ has been explored before. As pointed out in [10], transitionsymmetry reduction is

2

orthogonal to, and can be combined with partial order reduction techniques for safety
verification.

We implemented this symmetry discovery algorithm on top of our dynamic model
checkerInspect [3, 13]. Our experiments shows that our symmetry discovery algo-
rithm can successfully discover transition symmetries that are hard or otherwise cum-
bersome to identify manually, and can significantly reduce the checking time for realis-
tic multithreaded applications.

The rest of this paper is organized as follows. In section 2, we review the relevant
technical background. In Section 3, we present our algorithm for discovering symmetry
in multithreaded programs. In Section 4, we show how to combine the symmetry dis-
covery algorithm with a popular algorithm of dynamic partial order reduction (DPOR).
In Section 5 and Section 6, we explain the implementation details and present our ex-
perimental results. We review related work in Section 7 and then conclude this paper in
Section 8.

2 Preliminaries

2.1 Concurrent Programs

We consider a multithreaded program with a fixed number of sequential threads as a
state transition system. We useT id = {1, . . . , n} to denote the set of thread identities.
Threads communicate with each other viaglobalobjects which are visible to all threads.
The operations on global objects are calledvisible operations, while thread local vari-
able updates areinvisible operations. A stateof a multithreaded program consists of
the global state, and the local state of each thread. The local state of a thread is a stack
which is composed of frames. We assign each frame of the stacka unique id. Hence the
local state can be viewed as a map fromFid ⊂ N to frames. A frame is a map from
thread-local variables to the concrete values. Formally, the total system state (S), the
local states of all threads (Locals), the local state of each thread (Local), and the frame
of a local state (Frame) are defined:

S ⊆ Global × Locals

Locals = T id → Local

Local = Fid 7→ Frame

Frame = V 7→ N

In this paper, we will assume that the state spaces we consider do not contain any
cycles, and focus on detecting deadlocks and safety-property violations such as data
races and assertion violations. Note that in model checkingof software implementa-
tions, acyclic state spaces are quite common. The executionof many practical software
applications eventually terminates due to the inputs or therun/test time bound.

For convenience, we useg(s) to denote the global state in a states, and uselτ (s)
to denote the local state of threadτ in s. We writes[τ := l′] to denote a state which
is identical tos except that the local state of threadτ is l′. We uses[g := g′; τ := l′]
to denote a state that is the same as the states except that the global state isg′ and the
local state of threadτ is l′.

3

A transition advances the program from one state to a subsequent state by perform-
ing one visible operation of a thread, followed by a finite sequence of invisible oper-
ations of the same thread, ending just before the next visible operation of that thread.
The transitiontτ of threadτ can be defined astτ : Global×Local → Global×Local.

Let T denote the set of all transitions of a program. A transitiontτ ∈ T is enabled
in a states if tτ (g(s), lτ (s)) is defined. Ift is enabled ins andt(g, l) = 〈g′, l′〉, then
we say the execution oft from s produces a successor states′ = s[g := g′; τ := l′],

writtens
t
→ s′.

The behavior of a multithreaded programP is given by a transition systemM =
(S, R, s0), whereR ⊆ S×S is the transition relation, ands0 is the initial state.(s, s′) ∈

R iff ∃t ∈ T : s
t
→ s′.

2.2 A Simple C-like Programming Language

Taking the source code of a multithreaded program into consideration, a transitiont is
a sequence of statements[m1, m2, . . . , mk] of the program, in which the first statement
contains a visible operation on the global objects, and the rest of the statements are
invisible operations on local objects of the same thread.

To simplify presentation, in this paper, we focus on a C-likesimple programming
language as shown in Fig. 1. Nevertheless, the theorems we prove in this paper can
be extended to accommodate the entire C language. In our actual implementation, we
support the entire C language.

P ::= thread∗

thread ::= Stmt∗

Stmt ::= [l :]s
s ::= lhs← e | if lhs then goto l′ | f(params) | lhs← f(params)

params ::= lhs∗

lhs ::= v | &v | ∗v
e ::= lhs | lhs ⋄ lhs

where ⋄ ∈ {+,−, ∗, /, %, <, >,≤,≥, 6=, =, ...}

Fig. 1.Syntax of a simple language that is similar to C

As shown in Fig. 1, a program is composed of a set of threads. Each thread is a
sequence of statements. A statement can be an assignment, a branch statement, or a
function call. A label may be associated with a statement.

We useη(s, t) to denote the list of statements that are exercised when a transitiont

is executed from the states. We useVL(η(s, t)) to denote the set of variables and labels
that appear inη(s, t).

Let θ : VL(η(s, t)) → VL′ be a mapping fromVL(η(s, t)) to another set of vari-
ables and labelsVL′. We useη(s, t)[θ] to denote the statement list that we get by re-
placing each variable and labelv ∈ VL(η(s, t)) with θ(v).

Definition 1 (syntactically equivalent transitions).Let t1 and t2 be two transitions
of a transition systemM that are enabled at states1 and s2 respectively. We sayt1

4

and t2 are syntactically equivalent if there exists a bijectionθ : VL(η(s1, t1)) →
VL(η(s2, t2)) such thatη(s1, t1)[θ] = η(s2, t2).

2.3 Residual Code of Threads

Let s be a state of a multithreaded program. Letτ be a thread that is enabled ins. The
residual code ofτ at s is the statements that may be executed byτ from s before its
termination. We writeC(s, τ) to denote this.

The residual code of a threadτ ats captures the code paths thatτ may take starting
from s. Take the thread shown in Fig. 2(a) as an example. Let the thread be at the point
that it finishes line 1 and is going to execute line 2. Assume that the condition at line 2
is false in the states. If we are able to infer that this condition is false, we can conclude
that line 2-5 is the residual code of this thread. Otherwise,we can consider line 1-5,
which is an overapproximation of line 2-5, as the residual code.

Fig. 2(b) shows a thread that calls a recursive function. Letthe execution context
of the thread be[f(0); f(1)], and the thread is in line 5, right before the third call to
f. Here the parameterb has multiple instances in different frames of the call stack,
we usebi to differentiate them. The residual code of the thread at this point is〈f(b2);
print(b2); print(b1)〉. This can be easily computed by dynamically capturing the
execution context of the thread and having an intra-proceduralanalysis for each function
call in the execution context.

thread: thread:
1: L1: a++; 1: f(int b){
2: if (a < 5){ 2: if (b > 2)
3: goto L1; 3: return;
4: } 4: b = b + 1;
5: local = a; 5: f(b);

6: print(b);
7: }

(a) a thread which has a branch statement (b) a thread that starts withf(0)

Fig. 2. Examples on the residual code of threads

Let c = C(s, τ) be the residual code of threadτ at s. We useVL(c) to denote the
set of variables and labels that appears inc. Let θ : VL(c) → VL′ be a mapping from
VL(c) to another set of variables and labels. We usec[θ] to denote the code that we get
by replacing each occurrence of variables and labelsv ∈ VL(c) with θ(v). Let lτ (s)
be a local state of threadτ at s. We uselτ (s)[θ] to denote a new local state we get by
renaming each variablev that appears inlτ (s) with θ(v).

Definition 2 (syntactically equivalent residual code).Let c1 = C(s1, a) and c2 =
C(s2, b) be the residual code of threada at s1 and threadb at s2 respectively. We say
that c1 andc2 are syntactically equivalent if there is a bijectionθ : VL(c1) → VL(c2)

such thatc1[θ] = c2. We denote this withc1
θ
∼ c2.

5

2.4 Symmetry

The main idea of symmetry reduction [7–9] is that symmetriesin the system induce
an equivalence relation on states of the concurrent system.While performing model
checking, one can discard a states if an equivalence states′ has been explored before.
Here we briefly review the formal definition of symmetry.

Definition 3 (automorphism).An automorphism on a transition systemM = (S, R, s0)
is a bijectionσ : S → S such that∀s1, s2 ∈ S : (s1, s2) ∈ R ⇐⇒ (σ(s1), σ(s2)) ∈
R.

Let M be a transition system of a program. Letid be the identity automorphism
onM . For any set of automorphismA, the closureGA of A ∪ {id} under inverse and
composition is a group. We call such a groupa symmetry groupof M .

The symmetry groupGA induces an equivalence relation≡A onS such thats1 ≡A

s2 if ∃σ ∈ GA : s2 = σ(s1). The equivalent class[s] = {σ(s) | σ ∈ GA} of s under
≡A is called theorbit of s underGA.

Definition 4 (quotient transition system).Given a transition systemM = (S, R, s0)
and a symmetry groupGA of M , a quotient transition systemfor M moduloGA is a
transition systemM[A] = (S′, R′, s′0) in whichS′ = {[s] | s ∈ S}, R′ = {([s], [s′]) |
(s, s′) ∈ S}, ands′0 = [s0].

When we say that there is a symmetry in a program, we mean that there is an au-
tomorphism other then the identity automorphismid on the transition system of the
program.

Theorem 1 (reachability). Given a transition systemM = (S, R, s0) with a set of
automorphismA onM , s is reachable froms0 in M if and only if[s] is reachable from
[s0] in M[A].

In practice, the quotient transition system of a system is usually generated on-the-
fly using a canonicalization functionζ [9]. Let s be a state. This function mapss to a
unique representativeζ(s) of the equivalence class[s]. Whenever a states is visited,
ζ[s] is stored in memory, e.g., in a hash table.

In dynamic model checking, computing the runtime states of the system precisely
is often difficult. In this context, a state is identified by the sequence of transitions that
were executed from the initial states0 to reach the state. Based on this observation, one
can explore symmetry on transitions (e.g., as in [10]) instead of on states.

Definition 5. Let t = (s, s′) be a transition of a transition systemM . Let σ denote
an automorphism in a symmetry groupGA of M . We useσ(t) to denote the transition
(σ(s), σ(s′)). The relation≡A on transitions is defined as:t ≡A t′ if ∃σ ∈ GA : t′ =
σ(t).

It is not difficult to prove that the relation≡A on transitions is an equivalence rela-
tion. One can extend≡A on transitions to sequences of transitions.

6

Definition 6. Letw = t1t2 . . . tn be a nonempty sequence of transitions of a transition
systemM . LetA be a set of automorphism onM , andGA be the symmetry group of
A. Letσ ∈ GA. We writeσ(w) to denote the transition sequenceσ(t1)σ(t2) . . . σ(tn).
The relation≡A on nonempty sequences of transitions is defined as:w ≡A w′ if ∃σ ∈
GA : w′ = σ(w).

Here≡A is also an equivalence relation. Based on the above definition, we use[t]
to denote the equivalence class[t] = {σ(t) | σ ∈ GA} of t under≡A. Similarly, we
use[w] = {σ(w) | σ ∈ GA} to denote the equivalence class ofw under≡A.

Definition 7 (quotient transition system under≡A). Let M = (S, R, s0) be a tran-
sition system. LetGA be a symmetry group ofM . A quotient transition system for
M moduloGA defined with an equivalence relation≡A on sequences of transitions
is a transition systemM[A] = (S′, R′, s′0) where S′ = {[w] | s0

w
⇒ s in M},

R′ = {([w], [wt])|s0
w
⇒ s and∃s′ ∈ R : s

t
→ s′}, ands′0 = [ǫ] (the empty word).

Theorem 2. Let M = (S, R, s0) be a transition system andM[A] = (S′, R′, s′0) be a
quotient transition system for M modulo a symmetry groupGA of M . Lets be a state
in S. s is reachable froms0 in M via w if and only if[w] is reachable froms′0 in M ′.

3 Discovering Transition Symmetry

Following the definitions in Section 2, to reveal symmetry ina transition system, we
need to find conditions which imply the existence of an automorphism of the transition
system. As it is difficult to capture the states of multithreaded programs at runtime,
the method of using canonicalization functions to reveal symmetry does not work well
here. Our main idea is dynamically analyzing the residual code and the local states of
threads to discover symmetry.

Let s be a state in the transition systems, andτ be a thread that is enabled in a state
s. In a concrete execution, the transition thatτ can execute froms is determined by the
residual codeC(s, τ), the global stateg(s), and the local state ofτ in s, i.e., lτ (s). In
this section, we present a simple algorithm based on this idea.

Let ta and tb be two transitions that are enabled ats by threada and b, and let
ca = C(s, a) andcb = C(s, b) be the residual code of threada andb ats respectively. In
our algorithm, first we try to construct a bijectionθ : VL(ca) → VL(cb) such thatca and

cb are syntactically equivalent underθ, that is,ca
θ
∼ cb. If such aθ can be constructed,

we check whether the local states of threads are equivalent underθ. We can prove that
transitionsta andtb are symmetric if thec1 andc2 are syntactically equivalent, and the
local state of thread are equivalent underθ (detailed proof is in Section 3.3).

3.1 Inferring Syntactic Equivalence Among Residual Code

Let ca and cb be residual code of threadsa and b that follow the syntax in Fig. 1.
Fig. 3 shows the rules we use to construct a bijectionθ from VL(ca) to VL(cb). We
only conclude thatca and cb are syntactically equivalent if such a bijection can be

7

constructed by successfully applying these rules. Otherwise, we treatca andcb as non-
syntactic-equivalent.

In these rules, we usemτ to denote a statement in the residual code of threadτ , lτ

to denote a label in the residual code of threadτ . We usevg to denote a global variable,
vτ to denote a local variable of threadτ , andc to denote a constant.

(ma
1 , mb

1) ⊢ θ1; ([ma
2 , . . . , ma

n], [mb
2, . . . , m

b
n]) ⊢ θ2

([ma
1
, ma

2
, . . . , ma

n], [mb
1
, mb

2
, . . . , mb

n]) ⊢ θ1 ∪ θ2

R0

(ma, mb) ⊢ θ; (la, lb) ⊢ [la 7→ lb]

(la : ma, lb : mb) ⊢ θ ∪ [la 7→ lb]
R1

(ea, eb) ⊢ θ; (la, lb) ⊢ [la 7→ lb]

(if ea then goto la, if eb then goto lb) ⊢ θ ∪ [la 7→ lb]
R2

(ha, hb) ⊢ θ1; (ea, eb) ⊢ θ2

(ha = ea, hb = eb) ⊢ θ1 ∪ θ2

R3
(f(p1, . . . , pn), f(q1, . . . , qn)) ⊢ θ1; (ha, hb) ⊢ θ2

(ha = f(p1, . . . , pn), hb = f(q1, . . . , qn)) ⊢ θ1 ∪ θ2

R4

(ha
1 , hb

1) ⊢ θ1 (ha
2 , hb

2) ⊢ θ2

(ha
1
⋄ ha

2
, hb

1
⋄ hb

2
) ⊢ θ1 ∪ θ2

R5
([p1, . . . , pn], [q1, . . . , qn]) ⊢ θ

(f(p1, . . . , pn), f(q1, . . . , qn)) ⊢ θ
R6

(vg, vg) ⊢ [vg 7→ vg]
R7

(&vg, &vg) ⊢ [vg 7→ vg]
R8

(∗vg , ∗vg) ⊢ [vg 7→ vg]
R9

(&va, &vb) ⊢ [va 7→ vb]
R10

(∗va, ∗vb) ⊢ [va 7→ vb]
R11

(va, vb) ⊢ [va 7→ vb]
R12

(c, c) ⊢ []
R13

Fig. 3. Rules for inferring syntactic equivalence among residual code of threads

To simplify the presentation, we assume that the residual codeca andcb are two lists
of statements. In practice, the residual code can be presented as a control flow graph or
an abstract syntax tree. We can easily extend our rules to handle these structures. In our
implementation, we represent the residual code of a thread as a control flow graph.

We start by applying rule R0 toca andcb. R0 first checks whetherma
1 , which is

the first statement inca, is syntactically equivalent tomb
1, which is the first statement

of cb, by recursively applying other rules. Next, R0 recursivelychecks whether the
rest ofca are syntactically equivalent to the rest ofcb. If ma

1 andmb
1 are syntactically

equivalent underθ1, and the rest of residual code are syntactically equivalentunderθ2,
we conclude that the two statement lists are syntactically equivalent underθ1 ∪ θ2.

Rules R1 - R4 handle different kinds of statements, and rulesR5 - R13 handle
different forms of expressions. Specifically, rules R7 - R9 guarantee that the bijection
we construct only maps a global variable to itself. We can also extend the rules to be

8

more semantic-aware, for instance, by taking commutativity of binary operators into
consideration (e.g.,x + y versusy + x).

Theorem 3. Letc1 = C(s1, a) andc2 = C(s2, b) be the residual code of threada at s1

andb at sb respectively. If a bijectionθ : VL(c1) → VL(c2) betweenc1 andc2 can be
constructed following the rules in Fig. 3,c1 andc2 are syntactically equivalent.

Theorem 3 can be easily proved by induction on the length of the statements.

3.2 Discovering Symmetric Transitions

Syntactic equivalence between the residual code of threadsalone does not imply tran-
sition symmetry, as different threads may take different paths depending on the local
states of threads. To soundly infer transition symmetry, wealso need to examine the
local states of threads. The procedure SYMMETRIC in Fig. 4 shows our algorithm for
detecting transition symmetry.

1: SYMMETRIC(s, a, b) {
2: letc1 = C(s, a) andc2 = C(s, b) ;

3: if (following the rules in Fig. 3, there is a bijectionθ such thatC(s, a)
θ
∼ C(s, b))

4: return la(s)[θ] = lb(s);
5: else
6: return FALSE;
7: }

Fig. 4. Checking whether two transitions enabled ats by a andb are symmetric

SYMMETRIC accepts three parameters as inputs: a states and a pair of threads that
are enabled ins. It returnsTRUE or FALSE. Let a and b be the two threads. To test
whether the transitions that enabled bya andb at s are symmetric transitions, we first
compute the residual code ofa andb (line 2 or Fig. 4), which arec1 andc2 respectively.
Then we check whether a bijection betweenVL(c1) andVL(c2) can be constructed
following the rules in Fig. 3. If such a bijection cannot be constructed, SYMMETRIC

returnsFALSE. Otherwise, letθ be the constructed bijection, we check whether the
local states ofa andb at s are equivalent underθ (line 4 of Fig. 4). We only conclude
transition symmetry if the local states of threadsla(s) and lb(s) are equivalent under
this bijection.

3.3 Soundness

Lemma 1. Let ca = C(sa, a) and cb = C(sb, b) be the residual code of threada at
sa and threadb at sb respectively. Letta be a transition that is enabled atsa by thread

a such thatsa
ta→ s′a. Suppose we can constructθ : VL(ca) → VL(cb) following the

rules in Fig. 3 such thatca
θ
∼ cb. Now, if we haveg(sa) = g(sb), la(sa)[θ] = lb(sb),

there must exist a transitiontb that is enabled by threadb in sb such thatsb
tb→ s′b,

g(s′b) = g(s′a), andla(s′a)[θ] = lb(s
′
b).

9

Proof. A transitiont of threadτ that is enabled at a states is determined by the global
stateg(s), the local statelτ (s), and the residual code ofτ . Let η(sa, ta) , which is
the list of statements to be exercised while executingta from sa, be[m1, . . . , mk]. As
g(sa) = g(sb), la(sa)[θ] = lb(sb), and we can construct a bijectionθ following Fig. 3

such thatca
θ
∼ cb, we haveη(sb, tb) = η(sa, ta)[θ] (This can be proved by induction

onk. We omit the details here.). Obviously there iss′b such thatsb
tb→ s′b.

As ta
θ
∼ tb andθ is constructed following the rules in Fig. 3,η(sa, ta) andη(sb, tb)

must have the same visible operation. As only the visible operations may update global
objects, we haveg(s′a) = g(s′b).

la(s′a) is determined byg(s′a), la(sa), and the invisible operations inta, andlb(s
′
b)

is determined byg(s′b), lb(sb), and the invisible operations intb. As ta
θ
∼ tb, we can

use induction to prove that ifla(sa)[θ] = lb(sb), la(s′a)[θ] = lb(s
′
b). ⊓⊔

Lemma 2. Letta andtb be two transitions that are enabled at a states by threada and

b, and letsa andsb be two states inM such thats
ta→ sa ands

tb→ sb. If SYMMETRIC(s,
a, b) returnsTRUE, letθ : VL(C(s, a)) → VL(C(s, b)) be the bijection that we construct
following the rules in Fig. 3, we havesb = sa[a := lb(sa)[θ−1]; b := la(sa)[θ]].

Proof. As a transitiont that is enabled at a states can only changes the global states of
s and the local state oftid(t) in s, ta does not change the local state ofb in s. Hence,
lb(sa) = lb(s). Similarly, we havela(sb) = la(s). According to Lemma 1, we have
g(sb) = g(sa), andlb(sb) = la(sa)[θ]. Based on this, we have

sb = sa[a := la(s); b := lb(sb)] = sa[a := la(s)[θ][θ−1]; b := lb(sb)]
= sa[a := lb(s)[θ

−1]; b := lb(sb)] = sa[a := lb(sa)[θ−1]; b := la(sa)[θ]]

⊓⊔

Lemma 3. Let ta and tb be two transitions that are enabled at a states by threada

and b. If SYMMETRIC(s, a, b) returns TRUE, let θ be the bijection fromVL(C(s, a))
to VL(C(s, b)) that we construct following the rules in Fig. 3. Then for any transition

sequencet1, . . . , tk in M such thatsc
ta→ sa

t1→ s1 . . .
tk→ sk, there must exist another

transition sequencet′1, . . . , t
′
k in M such thatsc

tb→ sb

t′
1→ s′1 . . .

t′
k→ s′k and for all i,

1 ≤ i ≤ k, s′i = si[a := lb(si)[θ
−1]; b := la(si)[θ]].

Here we only provide a sketch of the proof here. We can prove this lemma by
induction on the length of the transition sequence. In the base case,k = 1. Let t1 be a

transition such thats
ta→ sa

t1→ s1. Following Lemma 2, we haveg(sa) = g(sb), and
lb(sb) = la(sa)[θ]. Based on this and Lemma 1, we can prove the base case by studying
three cases: (i)tid(t1) 6= a andtid(t1) 6= b; (ii) tid(t1) = a and (iii) tid(t1) = b. The
induction step can be proved similarly.

Theorem 4. Let sm be a state of a transition systemM = (S, R, s0). Let ta and tb
be two transitions that are enabled atsm by threada andb. If SYMMETRIC(sm, a, b)
returnsTRUE, ta andtb are symmetric transitions.

10

Proof. Let c1 = C(sm, a) andc2 = C(sm, b) be the residual code ofa andb at the state

s. Let ta andtb be the transitions ofa andb at s such thatsm
ta→ sa andsm

tb→ sb. If
SYMMETRIC(sm, a, b) returnsTRUE, let θ : VL(c1) → VL(c2) be the bijection that we
construct following the rules in Fig. 3. We can construct an automorphismσ on M as
follows:

σ(s) =

{

s if s is not reachable fromsa or sb

s[a := lb(s)[θ
−1]; b := la(s)[θ]] otherwise

Obviously, for any states that is not reachable fromsa or sb, (s, s′) ∈ R ⇐⇒
(σ(s), σ(s′)) ∈ R holds.

For any statesk that is reachable fromsa or sb. Let sa
t1→ s1 . . .

tk→ sk be the
transition sequence fromsa to reachsk. Following Lemma 3, if(sk, sk+1) ∈ R,
(σ(sk), σ(sk+1)) ∈ R. If (σ(sk), σ(sk+1)) ∈ R, with θ′ = θ−1, again according to
Lemma 3, we have(sk, sk+1) ∈ R. Henceσ is an automorphism ofM . ⊓⊔

4 Dynamic Partial Order Reduction with Symmetry Discovery

Dynamic partial order reduction (DPOR) [4] is an effective algorithm for reducing re-
dundant interleavings in dynamic model checking. In DPOR, given a states, the persis-
tent set ofs [14] is not computed immediately after reachings. Instead, DPOR explores
the states that can be reached froms using depth-first search, and dynamically adds
backtrack information into the backtrack set ofs while exploring the sub-space that is
reachable froms.

In more detail, letti be a transition that is enabled at states. Suppose the model
checker first selectst to execute ats. Let tj be a transition which can be enabled with
a depth first search (in one or more steps) froms by executingti. Then beforetj is
executed, DPOR will check whethertj andti are dependent and can be enabled con-
currently. If so,tid(tj) or the id of the thread whichtj is dependent on will be added
to the backtrack set ofs if a transition oftid(tj) is enabled ats. Later, in the process
of backtracking, if the states is found with non-empty backtrack set, DPOR will select
one transitiont which is enabled ats andtid(t) is in the backtrack set ofs, and explore
a new branch of the state space by executingt from s; at the same time,tid(t) will be
removed from the backtrack set ofs.

As shown in Fig. 5, combining our transition symmetry discovery method with
dynamic partial order reduction is straightforward. In this algorithm, we uses.enabled

to denote the set of enabled transitions in a states, s.backtrack to denote the set of
enabled threads that need to be explored at a states, ands.done to denote the set of
enabled threads the transitions of which have been executedat s. Comparing with the
original DPOR algorithm, the only place we need to change w.r.t. the original DPOR
algorithm is in line 11 of Fig. 5, where we check whether a symmetric transition has
been explored before exploring a transition.

Theorem 5. Consider a terminating multithreaded programM . If there exist deadlocks
in the state space ofM , SYM DPOR will visit at least one of them. If there exist data

11

1: Initially: S is empty; SYM DPOR(S, s0)

2: SYM DPOR(S, s) {
3: S.push(s);
4: for each t ∈ s.enabled, UPDATEBACKTRACKSETS(S, t);
5: let τ ∈ T id such that∃t ∈ s.enabled : tid(t) = τ ;
6: s.backtrack ← {τ};
7: s.done← ∅;
8: while (∃t ∈ s.backtrack \ s.done) {
9: s.done← s.done ∪ {t};

10: s.backtrack ← s.backtrack \ {t};
11: if (∀t′ ∈ s.done : ¬SYMMETRIC(s, tid(t), tid(t′))){

12: lets′ ∈ S such thats
t
→ s′;

13: SYM DPOR(S, s′);
14: S.pop(s);
15: }
16: }
17: }

18: UPDATEBACKTRACKSETS(S, t) {
19: letT be the sequence of transitions associated withS;
20: lettd be the latest transition inT that is dependent and may be co-enabled witht;
21: if (td 6= null){
22: letsd be the state inS from whichtd is executed;
23: letE be{q ∈ sd.enabled | tid(q) = tid(t), or q in T , q was aftertd in T ,

and there is ahappens-beforerelation for(q, t)}
24: if (E 6= ∅)
25: choose anyq in E, addtid(q) to sd.backtrack;
26: else
27: sd.backtrack← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
28: }
29: }

Fig. 5. Dynamic partial order reduction with symmetry discovery

races in the state space ofM , SYM DPOR will visit at least one of them. If we encode
local assertions as part of the residual code, and there exist local assertion violations
in the state space ofM , SYM DPORwill visit at least one of them.

Proof. Following the definition of deadlock, data races, or local assertion violations,
and Theorem 4, if a states has a deadlock , each states′ in [s] have a deadlock. Thus
exploring one state per equivalent class[s] shall be sufficient to detect deadlocks in
multithreaded programs. Similarly, the theorem holds for data races. As for local as-
sertions, if they are encoded as part of the residual code andthere exist local assertion
violations in the program, all states that belong to the sameequivalent class must violate
the assertion. Hence the theorem holds.

12

5 Implementation

We have implemented the transition symmetry discovery algorithm on top of our dy-
namic model checkerInspect [3, 13]. The workflow ofInspect with automatic
symmetry discovery is shown in Figure 6. It consists of four parts: (i) a program ana-
lyzer that analyzes the program for possible global accesses and other information of
the program, (ii) a program instrumentor that can instrument the program at the source
code level with codes that are used to communicate with the scheduler, etc., (iii) a
thread library wrapper that helps intercept the thread library calls, and (iv) an external
scheduler that schedules the interleaved executions of thethreads.

To implement the symmetry discovery algorithm, we enhance the scheduler to make
it capable of computing the residual code of threads. Besides, we inject a prober thread
into the program under test to make it possible for the scheduler to examine the execu-
tion contexts and the local states of threads during the concrete execution of a program.

Multithreaded C Program

Program Analyzer

Program Instrumentor Instrumented Program

Analysis Result

Thread Library Wrapper Scheduler

Executable

Thread 1

Thread N

Prober

request/permit

request/permit

query/answer

compile parse

link

Fig. 6. The workflow ofInspect with automatic symmetry discovery

The idea behind the prober thread is that, as all threads in a process share the same
address space, we can use a prober thread to get the values andaddresses of variables in
other threads, as well as the execution contexts of threads.Figure 7 shows the routine
of the prober thread. The task of a prober thread is straightforward: it keeps passively
waiting for query requests from the external scheduler, actaccordingly, and send results
back to the scheduler.

1: while (TRUE) {
2: wait a query request from the scheduler;
3: probe the value of a variable or the execution context of a thread according to the request;
4: send the result to the scheduler;
5: }

Fig. 7. The procedure of the probing thread

13

To examine the local variables of other threads, the prober thread needs an index
of local variables of threads with which it can locate specific variables. We improve
the program instrumentor to have it be able to instrument code that can help to build
such an index. Besides the instrumentation presented in [3], the program instrumentor
is required to (i) add code right before the first statement ofeach function to register
local variables in the new stack frame, (ii) add code right before the return statement of
each function to remove local variables of the current stackframe from the index, and
(iii) add struct interpretation functions for user-definedstructs with which the prober
can access specific fields of the structs. We use CIL [15] as thefront end for parsing
and instrumenting the multithreaded C programs.

To compute the residual code of threads, before starting model checking, the sched-
uler parse the program and construct a control flow graph for every function. To com-
pute the residual codeC(s, τ) of threadτ at a states during the search, first the scheduler
gets the execution context ofτ with the help of the prober thread. Then, for each func-
tion in the execution context, the scheduler conducts an intra-procedural analysis to get
an AST which represents the statements that may be executed by τ before it returns
from the function. In our implementation,C(s, τ) is represented as a list of ASTs that
we get by examining every function in the execution context.

6 Experimental Results

We conducted experiments on two realistic multithreaded benchmarks,aget andpfscan.
aget [16] is an ftp client which uses multiple worker threads to download differ-
ent segments of a large file concurrently.pfscan [17] is a multithreaded file scanner
that uses multiple threads to search in parallel through directories.aget-buggy and
pfscan-buggy are buggy versions ofaget andpfscanwith inserted data race and
deadlock bugs. All benchmarks are accompanied by test casesto facilitate the concrete
execution. Our experiments were conducted on a workstationwith 2.8 GHz Pentium D
processor and 2GB memory running Fedora 5.

Table 1 compares the results of checking the set of benchmarks using dynamic par-
tial order reduction (DPOR) and SYM DPOR. The first three columns show the statis-
tics of the test cases, including the name, the line of code, and the number of threads.
Columns 4-5 compare the two methods in terms of their total runtime in seconds.
Columns 6-7 compare the number of explored executions before they produce veri-
fication results. Column 8-9 compare the number of explored transitions. As shown in
the table, our symmetry discovery scheme can help to significantly reduce the checking
time, with only modest overheads. For instance, the symmetry checking adds 15%-
40% overhead on the time per execution ofpfscan. However, this overhead is well
compensated by the checking time we save with symmetry reduction. Furthermore, the
symmetry discovery step can be made more efficient by precomputing the bijections
between residual code of threads and storing them in a hash table along with the bijec-
tions.

Table 2 shows the overhead of dynamic analysis while checking pfscan and
pfscan-buggy using SYM DPOR. In this table, the first three columns shows the
benchmark, the number of threads and the number of executions for the checking. Col-
umn 4 (Total) shows the total checking time. Column 5 (Probing) shows the time that

14

Table 1.Comparing DPOR and SYM DPORon checking two benchmarks

Test programs Runtime(s) Executions Transitions
Benchmark loc thrds DPOR SymDpor DPOR SymDpor DPOR SymDpor
aget-buggy 1233 4 29107 16 1009010 420 30233023 19084
aget-buggy 1233 5 > 86400 37 - 926 - 32485

aget 1233 4 > 86400 18 - 462 - 16263
aget 1233 5 > 86400 258 - 6006 - 211256
aget 1233 6 > 86400 2579 - 87516 - 3117152

pfscan-buggy921 3 2 1 120 71 1980 1206
pfscan-buggy921 4 389 50 28079 3148 428410 50296

pfscan 921 3 21 3 1096 136 18006 2334
pfscan 921 4 64067 155 4184546 7111 64465088 85074
pfscan 921 5 > 86400 5147 - 322695 - 5373766

was spent on communcating with the prober thread to learn thelocal state of threads.
Column 6 (Residual+Bijection) shows the time for computingthe residual code of
threads and constructing the bijection between local variables and labels of threads.
Column 7 (Analysis) shows the number of times that SYMMETRIC is called. Column
8 (Success) shows the number of times that SYMMETRIC returnsTRUE. The time that
directly spent on SYMMETRIC includes probing time and bijection computation time.
The results show that probing the local states of threads, computing residual code of
threads, and constructing bijections among local variables only cost a small fraction
(< 2%) of the total checking time. Most of the 15%-40% slowdown perexecution is
contributed by the code that is instrumented for supportingdynamic analysis.

Table 2.Analysis on the overhead of dynamic analysis

Benchmark ThreadsExecutions Time (sec) Dynamic Analysis
Total ProbingResidual + BijectionAnalysis Success

pfscan-buggy 3 71 1 0.05 0.01 103 29
pfscan-buggy 4 3148 50 0.35 0.04 2613 230

pfscan 3 136 3.18 0.04 0.02 207 51
pfscan 4 7111 155.3 1.92 0.48 11326 3275
pfscan 5 322695 5147 81.41 20.03 1685733 544816

7 Related work

There has been a lot of research on automatic symmetry discovery. In solving boolean
satisfiability, a typical approach is to convert the probleminto a graph and employ graph
symmetry tool to uncover symmetry [18]. Another approach for discovering symmetry
is boolean matching [19], which converts the boolean constraints into a canonization
form to reveal symmetries. In domains such as microprocessor verification, the graph
often has a large number of vertices, however, the average number of neighbors of a

15

vertex is usually small. Several algorithms based on exploiting this fact [20, 21] are
proposed to efficiently handle these graphs. More recent effort on discovery symmetry
using sparsity [22] significantly reduced the discovery time by exploiting the sparsity
in both the input and the output of the system.

In explicit state model checking, adaptive symmetry reduction [23] has been pro-
posed to dynamically discover symmetry in a concurrent system on the fly. This is
close in spirit to our work. [23] introduces the notion of subsumption, which means that
a state subsumes another if its orbit contains that of the other one. Subsumption induces
a quotient structure with an equivalent set of reachable states. However, [23] did not
address the practical problems for discovering symmetriesin multithreaded programs
to improve the efficiency of dynamic verification. Our algorithm can revealing symme-
tries in realistic multithreaded programs. We have proven this with an efficient practical
implementation.

In software model checking, state canonicalization has been the primary method to
reveal symmetry. Efficient canonization functions [24–27]have been proposed to han-
dle heap symmetry in Java programs which create objects in dynamic area. As these
algorithms assume that the model checker is capable of capturing the states of concur-
rent programs, we cannot utilize them in dynamic verification to reveal symmetries.

In dynamic model checking of concurrent programs, transition symmetry [10] has
been the main method for exploiting symmetry at the whole process level. However,
in [10], the user is required to come up with a permutation function, which is then
used by the algorithm to check whether two transitions are symmetric. In practice, it is
often difficult to manually specify such a permutation function. By employing dynamic
analysis, our approach automates symmetry discovery. To the best of our knowledge,
our algorithm is the first effort in automating symmetry discovery for dynamic model
checking.

8 Conclusion and Future Work

We propose a new algorithm that uses dynamic program analysis to discover symmetry
in mulithreaded programs. The new algorithm can be easily combined with partial order
reduction algorithms and significantly reduce the runtime of dynamic model checking.
In future work, we would like to further improve the symmetrydiscovery algorithm
with a more semantic-aware dynamic analysis. Since dynamicanalysis can be a helpful
technique for testing and verification in many contexts, we are investigating several
possibilities in this direction.

References

1. Godefroid, P.: Model Checking for Programming Languagesusing Verisoft. In: POPL.
(1997) 174–186

2. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded
programs. In Ferrante, J., McKinley, K.S., eds.: PLDI, ACM (2007) 446–455

3. Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A Runtime Model Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, University of Utah (2008)

16

4. Flanagan, C., Godefroid, P.: Dynamic Partial-order Reduction for Model Checking Software.
In Palsberg, J., Abadi, M., eds.: POPL, ACM (2005) 110–121

5. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic partial order
reduction. In: SPIN. Volume 5156 of LNCS., Springer (2008) 288–305

6. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dynamic model checking with property
driven pruning to detect race conditions. In: ATVA. Volume 5311 of LNCS. (2008) 126–140

7. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Form. Methods Syst. Des.9(1-2) (1996) 77–104

8. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst. Des.
9(1-2) (1996) 105–131

9. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design
9(1/2) (1996) 41–75

10. Godefroid, P.: Exploiting symmetry when model-checking software. In: FORTE. Volume
156 of IFIP Conference Proceedings., Kluwer (1999) 257–275

11. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder. STTT
2(4) (2000) 366–381

12. Zaks, A., Joshi, R.: Verifying multi-threaded c programs with spin. In Havelund, K., Ma-
jumdar, R., Palsberg, J., eds.: Model Checking Software, 15th International SPIN Workshop,
Los Angeles, CA, USA, August 10-12, 2008, Proceedings. Volume 5156 of Lecture Notes
in Computer Science., Springer (2008) 325–342

13. http://www.cs.utah.edu/∼yuyang/inspect/
14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems: An Ap-

proach to the State-Explosion Problem. Springer-Verlag (1996)
15. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language and tools for

analysis and transformation of c programs. In: CC. (2002) 213–228
16. http://freshmeat.net/projects/aget/
17. http://freshmeat.net/projects/pfscan
18. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat instances in the

presence of symmetry. In: DAC, New York, NY, USA, ACM (2002) 731–736
19. Chai, D., Kuehlmann, A.: Building a better boolean matcher and symmetry detector. In:

DATE. (2006) 1079–1084
20. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry

detection for CNF. In: DAC, New York, NY, USA, ACM (2004) 530–534
21. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse

graphs. In: SIMA Workshop on Algorithm Engineering and Experiments. (2007)
22. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of sym-

metries. In: DAC, New York, NY, USA, ACM (2008) 149–154
23. Wahl, T.: Adaptive symmetry reduction. In: Computer Aided Verification, Springer (2007)

393–405 LNCS 4590.
24. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In: SPIN.

Volume 2057 of Lecture Notes in Computer Science., Springer(2001) 80–102
25. Iosif, R.: Exploiting heap symmetries in explicit-state model checking of software. In:

16th IEEE International Conference on Automated Software Engineering (ASE 2001), 26-
29 November 2001, Coronado Island, San Diego, CA, USA, IEEE Computer Society (2001)
254–261

26. Iosif, R.: Symmetry reductions for model checking of concurrent dynamic software. STTT
6(4) (2004) 302–319

27. Visser, W., Pasareanu, C.S., Pelánek, R.: Test input generation for java containers using state
matching. In Pollock, L.L., Pezzè, M., eds.: Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-
20, 2006, ACM (2006) 37–48

17

