Automatic Discovery of Transition Symmetry in
Multithreaded Programs using Dynamic Analysis*

Yu Yang', Xiaofang Cheh, Ganesh Gopalakrishnirand Chao Waryg

1 School of Computing, University of Utah, Salt Lake City, bfaJSA
2 NEC Laboratories America, Princeton, New Jersey, USA

Abstract. While symmetry reduction has been established to be an bauor
technique for reducing the search space in model checkisigapplication in
concurrent software verification is still limited, due teetbifficulty of specify-
ing symmetry in realistic software. We propose an algorifomautomatically
discovering and applying transition symmetry in multitdled programs during
dynamic model checking. Our main idea is using dynamic @eganalysis to
identify a permutation of variables and labels of the progthat entails syntactic
equivalence among thesidual code of threadand to check whether the local
states of threads are equivalent under the permutatiomé&¢ransition symme-
try discovery algorithm can bring substantial state spawengs during dynamic
verification of concurrent programs. We have implementetrtew algorithm
in the dynamic model checkdmspect . Our preliminary experiments show
that this algorithm can successfully discover transitipmmetries that are hard
or otherwise cumbersome to identify manually, and can Baaritly reduce the
model checking time while usingnspect to examine realistic multithreaded
applications.

1 Introduction

Dynamic model checking [1-3] methods have proven promifingevealing errors in
the implementation of real-world concurrent programs.yllwerk on real applications
and libraries, and side-step the high complexity of modabktmiction and state capture
by concretely executing the programs, and replaying thewgians for covering the dif-
ferent thread interleavings. While several technique® tieen proposed for reducing
the complexity of dynamic model checking [4—6], one impnpttechnique — namely
symmetry reduction has yet to be fully explored during dynamic model checking.
In contexts where models of the systems are verified, syngmediuction has al-
ready been shown highly beneficial for reducing the searabespr—9]. The basic ap-
proach taken in these works is finding and exploring the stadee of ajuotienttran-
sition system defined by an underlying equivalence relatimsually over the system
states. This approach does not work well during dynamic induecking because the
“state” consists of the runtime state of the threads beifjestito concrete execution:
capturing and canonicalizing such states is practicaffjcdit or impossible. In dy-
namic model checking of concurrent programs, transitionregtry [10] has been used

* Supported in part by NSF award CNS-0509379, CCF-081142b\Macrosoft.

as an effective way of pruning of the search space; howewegiires the user to pro-
vide a permutation function in order to check whether twadrions are symmetric.
In this paper, we present an algorithm to automate tramsgionmetry discovery by
employing dynamic analysis. To our best knowledge, thikésfirst approach to auto-
mate transition symmetry discovery for the dynamic verifaoaof realistic concurrent
programs.

We first note that purely static analysis based approacleesfn insufficient for
detecting symmetries across threads. With static analysesmay be tempted to con-
clude symmetry at the starting points of the threads thaterated out of the same
thread routine with the same parameters. However, this &\alimiting criterion. Al-
though in practice multiple threads are often created oth@Same thread routine, it
is quite common that the threads shared the same routinedeith different param-
eters for various purposes. Furthermore, light-weighthmé$ such as static analysis
cannot infer in general whether the threads are still synimafter steps of execution,
even if threads are spawned from the same routine with the pamameters. Hence, to
maximize symmetry reduction, we need to examine the loeaéstof threads during
the concrete executions of programs.

As system calls are widely used in multithreaded C progratnsdifficult to pre-
cisely capture and compare the local states of threads ttiitethe program under test
and the dynamic verifier execute as peer user-level apjpitatlJava PathFinder [11]
and SPIN [12] capture the states of multithreaded progranistbrpreting the execu-
tion. Interpretation requires the model checker to havevits stubs for library routines.
As it is difficult or impossible to create stubs for systemsé.g., file operations) that
are widely used among applications written in C, in genemlcannot take the inter-
pretation approach to examine multithreaded applicatimitgen in C.

In this paper we propose a new algorithm for revealing symyriatmultithreaded
programs and show how it can be combined seamlessly withndignzartial order re-
duction (DPOR) [4] for more efficient dynamic model checkifig overcome the state
capture problem, we use dynamic program analysis to exatiménecal state of thread
and to discover symmetry in multithreaded programs. That$sead of statically ana-
lyzing the program, we conduct program analysis during tireete execution of the
program.

In more detail, we compute thresidual codeof threads while executing the pro-
gram. The residual code of a threadt a states is the code that may be executed by
7 from s beforer’s termination. If we find that the residual code of threads lea put
into syntacticequivalence under a bijection over thread local variablaesmand label
names, we further check whether the local states of thremtalso be put into equiva-
lence under this bijection. We shall prove that, in a staté a multithreaded program,
if the residual code of two threadss#re syntactically equivalent under a certain bijec-
tion of thread local variables and labels, and the locaéstaf threads ir are identical
under the same bijection, then there is a transition synyni@tthe enabled transitions
of the two threads at (details in Section 3). Since transition symmetries indace
equivalence relation on states of the concurrent systermglmodel checking, we can
discard a state, or backtrack in the context of stateless search, if an edpt state
s’ has been explored before. As pointed out in [10], transisggmmetry reduction is

orthogonal to, and can be combined with partial order rédodechniques for safety
verification.

We implemented this symmetry discovery algorithm on topwfadynamic model
checker nspect [3,13]. Our experiments shows that our symmetry discovigg-a
rithm can successfully discover transition symmetries #ina hard or otherwise cum-
bersome to identify manually, and can significantly redbeedhecking time for realis-
tic multithreaded applications.

The rest of this paper is organized as follows. In section@yeview the relevant
technical background. In Section 3, we present our algorfthr discovering symmetry
in multithreaded programs. In Section 4, we show how to comlthhe symmetry dis-
covery algorithm with a popular algorithm of dynamic pdrtieder reduction (DPOR).
In Section 5 and Section 6, we explain the implementatioaildednd present our ex-
perimental results. We review related work in Section 7 et tconclude this paper in
Section 8.

2 Preliminaries

2.1 Concurrent Programs

We consider a multithreaded program with a fixed number ofisetial threads as a
state transition system. We ugéd = {1, ...,n} to denote the set of thread identities.
Threads communicate with each othergiabalobjects which are visible to all threads.
The operations on global objects are caNgsible operationswhile thread local vari-
able updates armvisible operationsA stateof a multithreaded program consists of
the global state, and the local state of each thread. Thédtate of a thread is a stack
which is composed of frames. We assign each frame of the atanique id. Hence the
local state can be viewed as a map frétid C N to frames. A frame is a map from
thread-local variables to the concrete values. Formdily,total system states§, the
local states of all threadd.6cals), the local state of each threalldcal), and the frame
of a local state ¥'rame) are defined:

S C Global x Locals
Locals = Tid — Local
Local = Fid — Frame

Frame=YV — N

In this paper, we will assume that the state spaces we cardideot contain any
cycles, and focus on detecting deadlocks and safety-propi@lations such as data
races and assertion violations. Note that in model chec&frapftware implementa-
tions, acyclic state spaces are quite common. The exeaftimany practical software
applications eventually terminates due to the inputs orahéest time bound.

For convenience, we usgs) to denote the global state in a stateand usd., (s)
to denote the local state of threadn s. We write s[T := !’] to denote a state which
is identical tos except that the local state of threads I’. We uses[g := ¢';7 := ']
to denote a state that is the same as the stateept that the global state jsand the
local state of thread is[’.

A transition advances the program from one state to a subségtate by perform-
ing one visible operation of a thread, followed by a finiteigenge of invisible oper-
ations of the same thread, ending just before the next eisipkration of that thread.
The transitiont of threadr can be defined as : Global x Local — Global x Local.

Let 7 denote the set of all transitions of a program. A transitios 7 is enabled
in a states if ¢-(g(s),l,(s)) is defined. Ift is enabled ins andt(g,l) = (¢’,1’), then
we say the execution affrom s produces a successor state= slg := ¢';7 := '],

writtens 5 ¢
The behavior of a multithreaded prograrnis given by a transition system/ =
(S, R, so), whereR C S x S'is the transition relation, ang is the initial state(s, s') €

Riff HtecT: 555,

2.2 A Simple C-like Programming Language

Taking the source code of a multithreaded program into denation, a transition is

a sequence of statemeits,; , mo, . . ., m;] of the program, in which the first statement
contains a visible operation on the global objects, and dis¢ of the statements are
invisible operations on local objects of the same thread.

To simplify presentation, in this paper, we focus on a C-Bkaple programming
language as shown in Fig. 1. Nevertheless, the theorems ove jam this paper can
be extended to accommodate the entire C language. In ol dttplementation, we
support the entire C language.

P ::= thread”
thread ::= Stmt*
Stmt == [l :]s
s ::=lhs « e | if lhs then goto I’ | f(params) | lhs «— f(params)
params ::= lhs*

lhs m=v | &v | *v
e == 1lhs|lhs © lhs
whereoe {+7_7*7 /7 %7<7>7§727#7 :7 "'}

Fig. 1. Syntax of a simple language that is similar to C

As shown in Fig. 1, a program is composed of a set of threadsh Baead is a
sequence of statements. A statement can be an assignmeahadh Istatement, or a
function call. A label may be associated with a statement.

We usen (s, t) to denote the list of statements that are exercised whemsiticn ¢
is executed from the stateWe useVL(n(s, t)) to denote the set of variables and labels
that appear im(s, t).

Letd : VL(n(s,t)) — VL' be a mapping fronVL(n(s,t)) to another set of vari-
ables and label®L’. We usen(s,t)[d] to denote the statement list that we get by re-
placing each variable and labek VL(n(s,t)) with 6(v).

Definition 1 (syntactically equivalent transitions).Lett; andt¢, be two transitions
of a transition systemd/ that are enabled at state; and s, respectively. We sagf

and t, are syntactically equivalent if there exists a bijectiéon: VL(n(s1,t1)) —
VL(T](SQ, tQ)) such thab?(sl, tl)[ﬁ] = 77(82, tQ).

2.3 Residual Code of Threads

Let s be a state of a multithreaded program. kdie a thread that is enableddinThe
residual code of at s is the statements that may be executed-iyom s before its
termination. We write (s, 7) to denote this.

The residual code of a threadht s captures the code paths thatnay take starting
from s. Take the thread shown in Fig. 2(a) as an example. Let thadHhye at the point
that it finishes line 1 and is going to execute line 2. Assunag ttie condition at line 2
is false in the state. If we are able to infer that this condition is false, we canciode
that line 2-5 is the residual code of this thread. Otherwige can consider line 1-5,
which is an overapproximation of line 2-5, as the residudico

Fig. 2(b) shows a thread that calls a recursive function.thetexecution context
of the thread béf(0); £(1)], and the thread is in line 5, right before the third call to
f. Here the parametar has multiple instances in different frames of the call stack
we useb; to differentiate them. The residual code of the thread atbint is(f (bs);
print(bs); print(by)). This can be easily computed by dynamically capturing the
execution context of the thread and having an intra-pro@ddnalysis for each function
call in the execution context.

t hr ead: t hr ead:
1: L1: a++; 1. f(int b){
2: if (a < 5){ 2: if (b>2)
3: goto L1, 3: return;
4: } 4: b="Db+ 1;
5: | ocal = a; 5: f(b);
6: print(b);
7}
(a) a thread which has a branch statement (b) a thread thtst with £(0)

Fig. 2. Examples on the residual code of threads

Letc = C(s,) be the residual code of threadat s. We useV’L(c) to denote the
set of variables and labels that appears.ibet : VL(¢) — VL’ be a mapping from
VL(c) to another set of variables and labels. We ¢j8eto denote the code that we get
by replacing each occurrence of variables and labets VL(c) with 6(v). Letl,(s)
be a local state of threadat s. We usel,(s)[f] to denote a new local state we get by
renaming each variablethat appears ih. (s) with 6(v).

Definition 2 (syntactically equivalent residual code)Letc; = C(s1,a) andcy =
C(s2,b) be the residual code of threadat s; and threadb at s, respectively. We say
thatc; andcs are syntactically equivalent if there is a bijectién VL(c1) — VL(c2)

such thaic; [#] = ¢o. We denote this withy 2 cs.

2.4 Symmetry

The main idea of symmetry reduction [7-9] is that symmetiriethe system induce
an equivalence relation on states of the concurrent sydf¢ile performing model
checking, one can discard a stati# an equivalence stat€ has been explored before.
Here we briefly review the formal definition of symmetry.

Definition 3 (automorphism).An automorphism on a transition systéih= (S, R, so)
is a bijections : S — S such thatVsy, so € S : (s1,52) € R <= (0(s1),0(s2)) €
R.

Let M be a transition system of a program. lidtbe the identity automorphism
on M. For any set of automorphism, the closures 4 of AU {id} under inverse and
composition is a group. We call such a graupymmetry groupf M.

The symmetry group: 4 induces an equivalence relatiery on .S such thats; =4
s9if o € G4 : s3 = o(s1). The equivalent class] = {o(s) | o € G4} of s under
= 4 is called theorbit of s underG 4.

Definition 4 (quotient transition system).Given a transition system/ = (.5, R, so)
and a symmetry grouf¥ 4 of M, a quotient transition systerior A/ moduloG 4 is a
transition system\/| 4; = (S’, R/, sp) in whichS” = {[s] | s € S}, R" = {([s], [s']) |
(s,s') € S}, ands(, = [so].

When we say that there is a symmetry in a program, we meanttbgd s an au-
tomorphism other then the identity automorphiginon the transition system of the
program.

Theorem 1 (reachability). Given a transition systeM/ = (S, R, s9) with a set of
automorphismA4 on M, s is reachable frons, in M if and only if[s] is reachable from
[So] in M[A]

In practice, the quotient transition system of a system imll generated on-the-
fly using a canonicalization function[9]. Let s be a state. This function mapgo a
unigue representativgs) of the equivalence clags|. Whenever a state is visited,
([s] is stored in memory, e.g., in a hash table.

In dynamic model checking, computing the runtime statehefdystem precisely
is often difficult. In this context, a state is identified by tbequence of transitions that
were executed from the initial statg to reach the state. Based on this observation, one
can explore symmetry on transitioresd, as in [10]) instead of on states.

Definition 5. Lett = (s, s’) be a transition of a transition systed/. Let o denote
an automorphism in a symmetry groGfy of M. We user(t) to denote the transition
(o(s),0(s")). The relation=4 on transitions is defined ag:=4 ' if 30 € G4 : t/ =

o(t).

It is not difficult to prove that the relatios 4 on transitions is an equivalence rela-
tion. One can exteng 4 on transitions to sequences of transitions.

Definition 6. Letw = t1t5 .. .t, be a nonempty sequence of transitions of a transition
systemM. Let A be a set of automorphism oW, andG 4 be the symmetry group of
A. Leto € G 4. We writes(w) to denote the transition sequene&)o(t2) ... o(ty,).
The relation=_4 on nonempty sequences of transitions is defineavas;4 v’ if 30 €
Ga:w' =o(w).

Here=_4 is also an equivalence relation. Based on the above definitie useft]
to denote the equivalence cldgs= {o(t) | 0 € G4} of t under= 4. Similarly, we
use[w] = {o(w) | ¢ € G4} to denote the equivalence classotinder= 4.

Definition 7 (quotient transition system under=_4). Let M = (S, R, so) be a tran-
sition system. Letz 4 be a symmetry group af/. A quotient transition system for
M moduloG 4 defined with an equivalence relatiegn, on sequences of transitions
is a transition systemM 4 = (S',R’,s}) where S’ = {[w] | s = s in M},

R = {([w], [wt])|so % s and3s’ € R: s > '}, ands(, = [¢] (the empty word).

Theorem 2. Let M = (S, R, s0) be a transition system antl/| 4; = (S’, R/, s;) be a
quotient transition system for M modulo a symmetry gréypof M. Lets be a state
in S. s is reachable froms, in M viaw if and only if[w] is reachable frons in M’.

3 Discovering Transition Symmetry

Following the definitions in Section 2, to reveal symmetnaitransition system, we
need to find conditions which imply the existence of an autqhism of the transition
system. As it is difficult to capture the states of multitided programs at runtime,
the method of using canonicalization functions to reveaisetry does not work well
here. Our main idea is dynamically analyzing the residudecand the local states of
threads to discover symmetry.

Let s be a state in the transition systems, arfek a thread that is enabled in a state
s. In a concrete execution, the transition thatan execute from is determined by the
residual code€ (s, 7), the global statg(s), and the local state af in s, i.e, I, (s). In
this section, we present a simple algorithm based on thé ide

Let ¢, andt, be two transitions that are enabledsaby threada andb, and let
ce = C(s,a)andc, = C(s,b) be the residual code of threacndb at s respectively. In
our algorithm, first we try to construct a bijectién VL(c,) — VL(¢) such that, and

¢y, are syntactically equivalent undérthat is,c, g ¢ If such ad can be constructed,
we check whether the local states of threads are equivahelerd. \We can prove that
transitions, andt, are symmetric if the; ande, are syntactically equivalent, and the
local state of thread are equivalent unéefdetailed proof is in Section 3.3).

3.1 Inferring Syntactic Equivalence Among Residual Code

Let ¢, and¢, be residual code of threadsand b that follow the syntax in Fig. 1.
Fig. 3 shows the rules we use to construct a bijectidrom VL (c,) to VL(c,). We
only conclude that, andc; are syntactically equivalent if such a bijection can be

constructed by successfully applying these rules. Otlssmwie treat, andc, as non-
syntactic-equivalent.

In these rules, we use™ to denote a statement in the residual code of thredd
to denote a label in the residual code of threalVe usev, to denote a global variable,
v” to denote a local variable of threadandc to denote a constant.

(mtll7 ml{) H 91; ([m(217~~7mz17 [mg7 7m§L]) H 02 RO

([m¢&,mg,...,ma], [mb,mb,...,mb])F 61 U0

(m®, m®F6; (1) F[*—1°
(Io :me, 1P :mb)FOU[le — Y]

R1

(e®,)8, (1%, 1°)F 1%~ 1%

R2
(if e then goto [, if e’ then goto [?) - AU [I¢ — [?]

(B, B F O (e e FO: oo (frpn), flar g FO0 (0% B0 o

(he =€, hb=eb)F 01 U0 (he = f(p1,...y0n)y RO =f(q1,. ., qn)) F 61 U0
(htll7 hl{)}_91 (37 hg)}_92 R5 ([pl,,an [q1,,Qn])}_9 R6
(hg o hg, hbohb)F 6 Ub (f(Prs--oypn)s flar,. o qn)) F 0O
R7 R8 R9
(vg, vg) I [vg = vg] (&vg, &vg) = [vg = vg] (xvg, *vg) I [vg — vg]
(&ve, &vb) F (v — v?] R10 (kv®, *0) F [0 — v?] Ri1 (v, v°)F [ve — b R12
——— — R13
(e, k1]

Fig. 3. Rules for inferring syntactic equivalence among residodkcof threads

To simplify the presentation, we assume that the residwdd¢pandc;, are two lists
of statements. In practice, the residual code can be pexsasta control flow graph or
an abstract syntax tree. We can easily extend our rules widairese structures. In our
implementation, we represent the residual code of a threadcantrol flow graph.

We start by applying rule RO te, andc,. RO first checks whethen{, which is
the first statement in,, is syntactically equivalent te:%, which is the first statement
of ¢y, by recursively applying other rules. Next, RO recursivehecks whether the
rest ofc, are syntactically equivalent to the restqf If m¢ andm! are syntactically
equivalent undef;, and the rest of residual code are syntactically equivaladerd,,
we conclude that the two statement lists are syntacticgilyvalent undeé, U 65.

Rules R1 - R4 handle different kinds of statements, and mfes R13 handle
different forms of expressions. Specifically, rules R7 - R@mgntee that the bijection
we construct only maps a global variable to itself. We cap abgend the rules to be

more semantic-aware, for instance, by taking commutgtvitbinary operators into
consideration (e.gx + y versusy + x).

Theorem 3. Lete; = C(s1,a) andes = C(s2,b) be the residual code of threadat s;
andb at s, respectively. If a bijectioft : VL(c¢1) — VL(c2) betweere; ande; can be
constructed following the rules in Fig. 8, andc, are syntactically equivalent.

Theorem 3 can be easily proved by induction on the lengthe$tatements.

3.2 Discovering Symmetric Transitions

Syntactic equivalence between the residual code of threlade does not imply tran-
sition symmetry, as different threads may take differethgaepending on the local
states of threads. To soundly infer transition symmetryalge need to examine the
local states of threads. The procedusev®ETRIC in Fig. 4 shows our algorithm for
detecting transition symmetry.

1: SYMMETRIC(s, a, b) {

2 letcy = C(s,a)andcz = C(s,b) ;

3 if (following the rules in Fig. 3, there is a bijectignsuch thaC(s, a) L C(s,b))
4: return 1o (s)[0] = lu(s);

5 else

6: return FALSE;

7}

Fig. 4. Checking whether two transitions enabled &y « andb are symmetric

SYMMETRIC accepts three parameters as inputs: a stated a pair of threads that
are enabled irs. It returnsTRUE or FALSE. Let a andb be the two threads. To test
whether the transitions that enableddwandb at s are symmetric transitions, we first
compute the residual code @fndb (line 2 or Fig. 4), which are; andc, respectively.
Then we check whether a bijection betweéh(c;) and VL(c2) can be constructed
following the rules in Fig. 3. If such a bijection cannot benstructed, SMMETRIC
returnsrALSE. Otherwise, let) be the constructed bijection, we check whether the
local states ofi andb at s are equivalent undet (line 4 of Fig. 4). We only conclude
transition symmetry if the local states of thredgd&s) andi,(s) are equivalent under
this bijection.

3.3 Soundness

Lemmal. Letc, = C(sq,a) andc, = C(sp,b) be the residual code of threadat
s, and threadb at s;, respectively. Let, be a transition that is enabled a, by thread

a such thats, s!. Suppose we can construtt VL(c,) — VL(c,) following the

rules in Fig. 3 such that, 2 cp. Now, if we havey(s,) = g(sp), la(sq)[0] = lp(sp),

there must exist a transitiot), that is enabled by threadl in s, such thats, By S,

9(s3) = g(sq), andla (s,)[0] = lp(sp)-

Proof. A transitiont of threadr that is enabled at a statds determined by the global
stateg(s), the local staté.(s), and the residual code of. Let n(s,,t,) , which is
the list of statements to be exercised while executinjom s, be[m, ..., mg]. As
9(sa) = g(sp), la(sa)[0] = ls(sp), and we can construct a bijectiérfollowing Fig. 3

such thate, g cp, We haven(sy, ty) = n(sa, tq)[0] (This can be proved by induction
on k. We omit the details here.). Obviously theresjssuch thats, > s.

Ast, g tp andf is constructed following the rules in Fig. @(s., t.) andn(sy, tp)
must have the same visible operation. As only the visibleatmns may update global
objects, we have(s,,) = g(s}).

la(s},) is determined by (s,,), l.(s.), and the invisible operations iy, andi(s;)

is determined by(s;), l»(ss), and the invisible operations in. As ¢, 2 ty, We can
use induction to prove thatif,(s,)[0] = lp(sp), la(s,)[0] = b (s})- O

a

Lemma 2. Lett, andt, be two transitions that are enabled at a statey threads and

b, and lets, ands; be two states id/ such thats ta, s, ands B sp. If SYMMETRIC(s,
a, b) returnsTRUE, letd : VL(C(s,a)) — VL(C(s, b)) be the bijection that we construct
following the rules in Fig. 3, we havg = s,[a := I,(s4)[071]; b := 1a(54)[0]].

Proof. As a transitiont that is enabled at a statecan only changes the global states of
s and the local state dfd(t) in s, t, does not change the local statebah s. Hence,
Iy(sq) = lp(s). Similarly, we have,(sy) = l.(s). According to Lemma 1, we have
9(sp) = g(sa), andly(sp) = 1, (s4)[0]. Based on this, we have

ala = 1a(s)[0][0"]; b :

J=s l(sv)]
b(s6)] = sala = Iy(sa) [0 '] b =1

a(sa)[0]]

= |

O

Lemma 3. Lett, andt, be two transitions that are enabled at a statby threada
andb. If SYMMETRIC(s, a, b) returns TRUE, let 6 be the bijection fromi/L(C(s, a))
to VL(C(s, b)) that we construct following the rules in Fig. 3. Then for argniition

. ta t t .
sequence, ..., t, in M such thats, -% s, — s;... = s, there must exist another
. . t t) t .
transition sequence,t in M such thats, = s, — s} ... = s} and for all 4,

1<i<k,st=sila:=1(s)[07;b:=1.(s:)[0]).

Here we only provide a sketch of the proof here. We can proigel#mma by
induction on the length of the transition sequence. In treelzasek = 1. Lett¢; be a
transition such that Sa 2N s1. Following Lemma 2, we have(s,) = g(ss), and
Iv(sp) = la(s4)[0]. Based on this and Lemma 1, we can prove the base case byrgjudyi
three cases: (Hid(t1) # a andtid(ty) # b; (i) tid(t1) = a and (iii) tid(t1) = b. The
induction step can be proved similarly.

Theorem 4. Let s,,, be a state of a transition systefd = (S, R, sg). Lett, andt,

be two transitions that are enabled &}, by threada andb. If SYMMETRIC(s,,,, a, b)
returnsTRUE, t, andt;, are symmetric transitions.

10

Proof. Letc¢; = C(si,, a) andey = C(sm, b) be the residual code afandb at the state

s. Lett, andt, be the transitions af andb at s such thats,,, LY s, ands,, 2, sp. If
SYMMETRIC (S, a, b) returnsTRUE, letd : VL(c1) — VL(c2) be the bijection that we
construct following the rules in Fig. 3. We can construct atoeorphisno on M as
follows:

(s) = s if s is not reachable from, or s
T T sla = 1, (s)[071]; b := La(s5)[0]] otherwise

Obviously, for any state that is not reachable from, or s, (s,s') € R <+—
(o(s),0(s")) € R holds.

For any states;, that is reachable from, or s;. Let s, 2N S1... ALY s;. be the
transition sequence from, to reachs;. Following Lemma 3, if(sx,sx+1) € R,
(0(sk),0(sk+1)) € R.If (0(sk),0(sk4+1)) € R, with @ = #~!, again according to
Lemma 3, we havésy, si+1) € R. Henceo is an automorphism af/. O

4 Dynamic Partial Order Reduction with Symmetry Discovery

Dynamic partial order reduction (DPOR) [4] is an effectivgaithm for reducing re-
dundant interleavings in dynamic model checking. In DPOReya states, the persis-
tent set ofs [14] is not computed immediately after reachindgnstead, DPOR explores
the states that can be reached frerasing depth-first search, and dynamically adds
backtrack information into the backtrack setsofvhile exploring the sub-space that is
reachable frons.

In more detall, let; be a transition that is enabled at stateSuppose the model
checker first selectsto execute as. Lett; be a transition which can be enabled with
a depth first search (in one or more steps) fromy executingt;. Then before; is
executed, DPOR will check whether andt; are dependent and can be enabled con-
currently. If so,tid(t;) or the id of the thread whichy is dependent on will be added
to the backtrack set of if a transition oftid(t;) is enabled at. Later, in the process
of backtracking, if the stateis found with non-empty backtrack set, DPOR will select
one transitiort which is enabled at andtid(t) is in the backtrack set of, and explore
a new branch of the state space by executifrgm s; at the same time;d(t) will be
removed from the backtrack set af

As shown in Fig. 5, combining our transition symmetry diseigvmethod with
dynamic partial order reduction is straightforward. Irsthlgorithm, we use.enabled
to denote the set of enabled transitions in a statebacktrack to denote the set of
enabled threads that need to be explored at a sfands.done to denote the set of
enabled threads the transitions of which have been exeatitedComparing with the
original DPOR algorithm, the only place we need to changd.whe original DPOR
algorithm is in line 11 of Fig. 5, where we check whether a syatrio transition has
been explored before exploring a transition.

Theorem 5. Consider a terminating multithreaded prograv. If there exist deadlocks
in the state space af/, SymDPOR will visit at least one of them. If there exist data

11

=

Initially: S is empty; SMDPOR(S, so)

SYMDPOR(S, s) {
S.pushg);
for eacht € s.enabled, UPDATEBACKTRACK SETS(S, t);
letT € Tid such thaBt € s.enabled : tid(t) = T;
s.backtrack «— {1};
s.done +— I,
while (3t € s.backtrack \ s.done) {
s.done «— s.done U {t};
s.backtrack «— s.backtrack \ {t};
if (Vt' € s.done : =“SYMMETRIC (s, tid(t), tid(t'))){
lets’ € S such thats % s
SYymDPOR(S, s');
S.pop(s);

NGO ROR EBooNourwn

)

18: UPDATEBACKTRACKSETS(S, 1) {

19: letT be the sequence of transitions associated Wijth

20: lett, be the latest transition it that is dependent and may be co-enabled with
21 if (tq # null){

22. letsy be the state i from whicht, is executed;

23: letE be{q € sq.enabled | tid(q) = tid(t),orqin T, q was afterty in T,
and there is &appens-beforeelation for (g, ¢)}

24: if (F # 2)

25: choose any in E, addtid(q) to sq.backtrack;

26: else

27: sa.backtrack «— sq.backtrack U {tid(q) | q € sq.enabled};

28: }

29: }

Fig. 5. Dynamic partial order reduction with symmetry discovery

races in the state space 81, SymDpPoORwill visit at least one of them. If we encode
local assertions as part of the residual code, and theret éacal assertion violations
in the state space df/, SymDpPoORwill visit at least one of them.

Proof. Following the definition of deadlock, data races, or locaeason violations,
and Theorem 4, if a statehas a deadlock , each statein [s| have a deadlock. Thus
exploring one state per equivalent cldskshall be sufficient to detect deadlocks in
multithreaded programs. Similarly, the theorem holds fatadaces. As for local as-
sertions, if they are encoded as part of the residual codéhemd exist local assertion
violations in the program, all states that belong to the saquévalent class must violate
the assertion. Hence the theorem holds.

12

5 Implementation

We have implemented the transition symmetry discoveryrédlgo on top of our dy-
namic model checkdrnspect [3,13]. The workflow ofl nspect with automatic
symmetry discovery is shown in Figure 6. It consists of foartg: (i) a program ana-
lyzer that analyzes the program for possible global acsessd other information of
the program, (ii) a program instrumentor that can instruintiem program at the source
code level with codes that are used to communicate with thedder, etc., (iii) a
thread library wrapper that helps intercept the threadiipcalls, and (iv) an external
scheduler that schedules the interleaved executions dfiteads.

To implement the symmetry discovery algorithm, we enhahestheduler to make
it capable of computing the residual code of threads. Bsside inject a prober thread
into the program under test to make it possible for the scleedi examine the execu-
tion contexts and the local states of threads during theretmexecution of a program.

Multithreaded C Progra ‘—>[Program Instrumentor]—» Instrumented Progra

i i

Program Analyzer——> Analysis Result

compile parse

Executable

request/permit
El'hread Library Wrappe BN Thread ot Scheduler I
S A o

Q
g

e
o

Fig. 6. The workflow ofl nspect with automatic symmetry discovery

The idea behind the prober thread is that, as all threadsiin@egs share the same
address space, we can use a prober thread to get the valussddaadses of variables in
other threads, as well as the execution contexts of thré&agiste 7 shows the routine
of the prober thread. The task of a prober thread is straightfrd: it keeps passively
waiting for query requests from the external schedulergecordingly, and send results
back to the scheduler.

1: while (TRUE) {

2 wait a query request from the scheduler;

3. probe the value of a variable or the execution context bfeaid according to the request;
4 send the result to the scheduler;

5

D}
Fig. 7. The procedure of the probing thread

13

To examine the local variables of other threads, the prdireatl needs an index
of local variables of threads with which it can locate specifariables. We improve
the program instrumentor to have it be able to instrumenéedbdt can help to build
such an index. Besides the instrumentation presented ith@jprogram instrumentor
is required to (i) add code right before the first statemergaath function to register
local variables in the new stack frame, (ii) add code rigtibleethe return statement of
each function to remove local variables of the current sfearke from the index, and
(i) add struct interpretation functions for user-defirgducts with which the prober
can access specific fields of the structs. We use CIL [15] afdiné¢ end for parsing
and instrumenting the multithreaded C programs.

To compute the residual code of threads, before startingehub@cking, the sched-
uler parse the program and construct a control flow graphveryefunction. To com-
pute the residual cod¥ s, 7) of threadr at a states during the search, first the scheduler
gets the execution context efwith the help of the prober thread. Then, for each func-
tion in the execution context, the scheduler conducts aa-otocedural analysis to get
an AST which represents the statements that may be execytedéfore it returns
from the function. In our implementatiod(s,) is represented as a list of ASTs that
we get by examining every function in the execution context.

6 Experimental Results

We conducted experiments on two realistic multithreaded¢bmarksaget andpf scan.
aget [16] is an ftp client which uses multiple worker threads tomdtoad differ-
ent segments of a large file concurrenglf.scan [17] is a multithreaded file scanner
that uses multiple threads to search in parallel througictbriesaget - buggy and
pf scan- buggy are buggy versions afget andpf scan with inserted data race and
deadlock bugs. All benchmarks are accompanied by test tasaslitate the concrete
execution. Our experiments were conducted on a workstatittm2.8 GHz Pentium D
processor and 2GB memory running Fedora 5.

Table 1 compares the results of checking the set of benclsnarkg dynamic par-
tial order reduction (DPOR) andy® DPOR The first three columns show the statis-
tics of the test cases, including the name, the line of codle tlke number of threads.
Columns 4-5 compare the two methods in terms of their totatime in seconds.
Columns 6-7 compare the number of explored executions édfay produce veri-
fication results. Column 8-9 compare the number of explarasitions. As shown in
the table, our symmetry discovery scheme can help to signifigcreduce the checking
time, with only modest overheads. For instance, the synynadtecking adds 15%-
40% overhead on the time per executiorpbdfscan. However, this overhead is well
compensated by the checking time we save with symmetry tiesu€&urthermore, the
symmetry discovery step can be made more efficient by preatingpthe bijections
between residual code of threads and storing them in a hbkhakong with the bijec-
tions.

Table 2 shows the overhead of dynamic analysis while chgckinscan and
pf scan- buggy using SYMmDpPOR In this table, the first three columns shows the
benchmark, the number of threads and the number of exesifiotthe checking. Col-
umn 4 (Total) shows the total checking time. Column 5 (Prgpshows the time that

14

Table 1. Comparing DPOR and\81DpPoRon checking two benchmarks

Test programs Runtime(s) Executions Transitions
Benchmark| loc |thrd§g DPOR |SymDpor DPOR |SymDpor DPOR |SymDpor
aget-buggy|1233 4 | 29107 16 |1009010 420 |30233023 19084
aget-buggy|1233 5 |> 86400, 37 - 926 - 32485

aget 1233 4 |>86400 18 - 462 - 16263

aget 1233 5 |>86400 258 - 6006 - 211256

aget 1233 6 |>86400 2579 - 87516 - 3117152

pfscan-buggy921| 3 2 1 120 71 1980 1206

pfscan-buggy921| 4 389 50 28079 | 3148 | 428410| 50296
pfscan |921| 3 21 3 1096 136 18006 | 2334
pfscan |921| 4 | 64067 | 155 |418454¢ 7111 |64465088 85074
pfscan |921| 5 |>86400 5147 - 322695 - 5373766

was spent on communcating with the prober thread to leartotta state of threads.
Column 6 (Residual+Bijection) shows the time for computthg residual code of
threads and constructing the bijection between local ksaand labels of threads.
Column 7 (Analysis) shows the number of times thatM®ETRIC is called. Column

8 (Success) shows the number of times tha@ETRIC returnsTRUE. The time that
directly spent on SMMETRIC includes probing time and bijection computation time.
The results show that probing the local states of threadapating residual code of
threads, and constructing bijections among local vargabldy cost a small fraction
(< 2%) of the total checking time. Most of the 15%-40% slowdown erecution is
contributed by the code that is instrumented for suppodiyrgamic analysis.

Table 2. Analysis on the overhead of dynamic analysis

Benchmark|ThreadsExecutions Time (sec) Dynamic Analysis
Total|ProbingResidual + BijectioPnalysig Success
pfscan-buggy 3 71 1 0.05 0.01 103 29
pfscan-buggy 4 3148 50 | 0.35 0.04 2613 230
pfscan 3 136 3.18| 0.04 0.02 207 51
pfscan 4 7111 |155.3 1.92 0.48 11326 | 3275
pfscan 5 322695 |5147| 81.41 20.03 1685733 544816

7 Related work

There has been a lot of research on automatic symmetry @iscda solving boolean
satisfiability, a typical approach is to convert the probieta a graph and employ graph
symmetry tool to uncover symmetry [18]. Another approagtdiscovering symmetry
is boolean matching [19], which converts the boolean cairg into a canonization
form to reveal symmetries. In domains such as microproces&sdication, the graph
often has a large number of vertices, however, the averagwauof neighbors of a

15

vertex is usually small. Several algorithms based on etiptpithis fact [20, 21] are
proposed to efficiently handle these graphs. More receotteff discovery symmetry
using sparsity [22] significantly reduced the discoveryetiby exploiting the sparsity
in both the input and the output of the system.

In explicit state model checking, adaptive symmetry reiducf23] has been pro-
posed to dynamically discover symmetry in a concurrentesgson the fly. This is
close in spirit to our work. [23] introduces the notion of sumption, which means that
a state subsumes another if its orbit contains that of theratfie. Subsumption induces
a quotient structure with an equivalent set of reachabkestdowever, [23] did not
address the practical problems for discovering symmeitni@sultithreaded programs
to improve the efficiency of dynamic verification. Our algbm can revealing symme-
tries in realistic multithreaded programs. We have prohénwith an efficient practical
implementation.

In software model checking, state canonicalization has lieeprimary method to
reveal symmetry. Efficient canonization functions [24—2&@Je been proposed to han-
dle heap symmetry in Java programs which create objectsnardic area. As these
algorithms assume that the model checker is capable of agtie states of concur-
rent programs, we cannot utilize them in dynamic verifiaatmreveal symmetries.

In dynamic model checking of concurrent programs, tramsisymmetry [10] has
been the main method for exploiting symmetry at the wholegss level. However,
in [10], the user is required to come up with a permutatiorcfiom, which is then
used by the algorithm to check whether two transitions anensgtric. In practice, it is
often difficult to manually specify such a permutation fuaot By employing dynamic
analysis, our approach automates symmetry discovery.dbékt of our knowledge,
our algorithm is the first effort in automating symmetry digery for dynamic model
checking.

8 Conclusion and Future Work

We propose a new algorithm that uses dynamic program asdtydiscover symmetry
in mulithreaded programs. The new algorithm can be easitybioed with partial order
reduction algorithms and significantly reduce the runtirhdymamic model checking.
In future work, we would like to further improve the symmettiscovery algorithm

with a more semantic-aware dynamic analysis. Since dynandtysis can be a helpful
technique for testing and verification in many contexts, e iavestigating several
possibilities in this direction.

References

1. Godefroid, P.: Model Checking for Programming Languagsieg Verisoft. In: POPL.
(1997) 174-186

2. Musuvathi, M., Qadeer, S.: Iterative context boundingsfstematic testing of multithreaded
programs. In Ferrante, J., McKinley, K.S., eds.: PLDI, ACR0Q7) 446—-455

3. Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A RustiModel Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, Usityesf Utah (2008)

16

Ea

10.

11.

12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

27.

Flanagan, C., Godefroid, P.: Dynamic Partial-order R&dn for Model Checking Software.
In Palsberg, J., Abadi, M., eds.: POPL, ACM (2005) 110-121

. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Hfiat stateful dynamic partial order

reduction. In: SPIN. Volume 5156 of LNCS., Springer (200882305

. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dyramddel checking with property

driven pruning to detect race conditions. In: ATVA. Volum&13 of LNCS. (2008) 126-140

. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Explatsymmetry in temporal logic model

checking. Form. Methods Syst. D&$1-2) (1996) 77-104

. Emerson, E.A,, Sistla, A.P.. Symmetry and model checkifgrm. Methods Syst. Des.

9(1-2) (1996) 105-131

. Ip, C.N., Dill, D.L.: Better verification through symmegti~ormal Methods in System Design

9(1/2) (1996) 41-75

Godefroid, P.: Exploiting symmetry when model-chegk&oftware. In: FORTE. Volume
156 of IFIP Conference Proceedings., Kluwer (1999) 257-275

Havelund, K., Pressburger, T.: Model checking java ot using java pathfinder. STTT
2(4) (2000) 366-381

Zaks, A., Joshi, R.: Verifying multi-threaded ¢ progsawith spin. In Havelund, K., Ma-
jumdar, R., Palsberg, J., eds.: Model Checking Softwarth, lternational SPIN Workshop,
Los Angeles, CA, USA, August 10-12, 2008, Proceedings. valb156 of Lecture Notes
in Computer Science., Springer (2008) 325-342
http://www.cs.utah.edtyuyang/inspect/

Godefroid, P.: Partial-Order Methods for the Verifioatof Concurrent Systems: An Ap-
proach to the State-Explosion Problem. Springer-Verl@96}

Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Giermediate language and tools for
analysis and transformation of ¢ programs. In: CC. (2003)-228
http://freshmeat.net/projects/aget/

http://freshmeat.net/projects/pfscan

Aloul, F.A., Ramani, A., Markoy, I.L., Sakallah, K.A.:oing difficult sat instances in the
presence of symmetry. In: DAC, New York, NY, USA, ACM (200317736

Chai, D., Kuehlmann, A.: Building a better boolean matcand symmetry detector. In:
DATE. (2006) 1079-1084

Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, L:LExploiting structure in symmetry
detection for CNF. In: DAC, New York, NY, USA, ACM (2004) 53634

Junttila, T., Kaski, P.: Engineering an efficient cacahlabeling tool for large and sparse
graphs. In: SIMA Workshop on Algorithm Engineering and Expents. (2007)

Darga, P.T., Sakallah, K.A., Markov, |.L.: Faster synmyeéiscovery using sparsity of sym-
metries. In: DAC, New York, NY, USA, ACM (2008) 149-154

Wahl, T.: Adaptive symmetry reduction. In: Computer éddverification, Springer (2007)
393-405 LNCS 4590.

Lerda, F., Visser, W.: Addressing dynamic issues of iamogmodel checking. In: SPIN.
Volume 2057 of Lecture Notes in Computer Science., Spri(2@01) 80-102

losif, R.: Exploiting heap symmetries in explicit-g&tahodel checking of software. In:
16th IEEE International Conference on Automated Softwargifieering (ASE 2001), 26-
29 November 2001, Coronado Island, San Diego, CA, USA, IEEmuter Society (2001)
254-261

losif, R.: Symmetry reductions for model checking of aament dynamic software. STTT
6(4) (2004) 302-319

Visser, W., Pasareanu, C.S., Pelanek, R.: Test inmarggon for java containers using state
matching. In Pollock, L.L., Pezze, M., eds.: Proceedirfdg@®@ ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006t|&ud, Maine, USA, July 17-
20, 2006, ACM (2006) 37-48

17

