Postconditioned Symbolic Execution

Qiuping Yi*?, Zijiang Yang, Shengjian Gul Chao Wanf), Jian Liu, Chen Zhab

1 National Engineering Research Center for Fundamentaiv@adt Institute of Software, Beijing, China
2 Graduate University, Chinese Academy of Sciences, Beij@ftjna
3 Department of Computer Science, Western Michigan Unitierkialamazoo, Michigan, USA
4 Department of Electrical and Computer Engineering, Viigifiech, Blacksburg, Virginia, USA

Symbolic execution is emerging as a powerful technique for number of branch conditions encountered during the execu-
generating test inputs systematically to achieve exhause path tion. Even for a medium-size program and a small bound for
coverage of a bounded depth. However, its practical use isteh the execution depth, exhaustively covering all possiblthpa

limited by path explosion because the number of paths of a b t | . M fforts h b d
program can be exponential in the number of branch conditiors can be extremely expensive. iany €lforts have been made

encountered during the execution. To mitigate the path exm- {0 mitigate the path explosion problem. One of them, which
sion problem, we propose a new redundancy removal method has been quite effective in practice, is called preconaib

called postconditioned symbolic execution. At each brandhg symbolic execution [8], where a predefined constrBipt... is
location, in addition to determine whether a particular branch passed as an additional parameter in addition to the program

is feasible as in traditional symbolic execution, our apprach o . .
checks whether the branch is subsumed by previous exploratns. under test. Preconditioned symbolic execution only dedsen

This is enabled by summarizing previously explored paths by into program branches that satidfy,..., with the net effect of
weakest precondition computations. Postconditioned syndtic pruning away the subsequent steps of unsatisfied branches. B

execution can identify path suffixes shared by multiple runsand |everaging the constraint, preconditioned symbolic etieou
eliminate them during test generation when they are redundat. effectively reduces the search space. In contrast, our aiar&

Pruning away such redundant paths can lead to a potentially R . .
exponential reduction in the number of explored paths. We have at eliminating redundant paths without reducing the search

implemented our method in the symbolic execution engine KLE ~ Space.
and conducted experiments on a large set programs from the = We propose a new method called postconditioned symbolic

GNU Coreutils suite._ QUI’ results confirm that_redundanqy due execution to mitigate path exp|osi0n, by |dent|fy|ng andrth
\t/eo‘;%marggﬂcgﬁghn:”ﬁ'x is both abundant and widespread in real- gjiminating redundant path suffixes encountered during-sym

' bolic execution. Our method is based on the observation that
many common path suffixes are shared among different test
runs, and repeatedly exploring these common path suffixes
is a main reason for path explosion. Postconditioned syimbol

Dynamic symbolic execution based test input generati§¥€cution associates each program locatimith a postcondi-
has emerged as a popular technique for testing real-wolgn that summarizes the explored path suffixes startingifro
applications written in full-fledged programming langusgePuring the iterative test generation process, new pathxesffi
such as C/C++ and Java [1], [2], [3], [4], [5], [6]. The method'® characterized and added incrementally to a postcondliti
performs concrete analysis as well as symbolic analysikef tepresented as a quantifier-free first-order logic comtrén
program simultaneously, often in an execution environmet{¢ Subsequent computation of new test inputs, our method
that accurately models the system calls and external idwar checks whether the current path condition is subsumed by the
The symbolic analysis is conducted by analyzing each e){gpstc:ondltlo_n. If_the answer is yes, the execution of the res
cution path precisely, i.e., encoding the path conditioraasOf the path is skipped. B
quantifier-free first-order logic formula and then decidthg ~ There are major differences between preconditioned and
formula with a SAT or SMT solver. When a path conditiofpostconditioned symbolic executions. The constraint @& th
is satisfiable, the solver returns a test input that can steer former approach is predefined, while the constraints of the
program execution along this path. Due to its capability d#tter are dynamically computed. The goal of preconditibne
handling real applications in their native execution esrir Symbolic execution is to avoid the paths that do not satisfy
ments, dynamic symbolic execution has been quite sucdes$fi® Predefined constraint, and thus there is no guarantee of
in practical settings—for a survey of the recent tools, sé&xhaustive path coverage. In fact, if the predefined constra
Pasareanet al. [7]. is false, thep no path wiII_ be explored. It highlights the fact that

However, a major hurdle that prevents symbolic executidi€ Predefined constraint has to be carefully chosen, or else
from getting even wider application fsath explosionThat is, It Will not be effective. In contrast, postconditioned syofib
the number of paths of a program can be exponential in tR&€cUtion has a path coverage that is equivalent to standard

symbolic execution, because the dynamically computed- post

Corresponding author: Zijiang Yang (email: zijiang.yang@ich.edu; web: conditions elliminatafedundantpaths Only-
www.cs.wmich.edutzijiang). We have implemented a software tool based on the KLEE

|. INTRODUCTION

symbolic virtual machine [6] and evaluated it using a largastr would give rise to a separate event, with unique control
set of C programs from the GNU Coreutils suite, whickocationsl! andi’. Conceptually, this corresponds to unwinding
implements some of the most frequently used Unix/Linuthe loop or recursive calls.

commands. These benchmarks can be considered as repn instructioninstr may have one of the following types:
resentatives of the systems code in Unix/Linux. They are halt, representing the normal program termination:
challenging for symbolic execution due to the extensiveafse abort, representing the faulty program termination:

error checking code, loops, pointers, and heap allocatéal da assignmenty := exp, wherev € V and exp is an

structures. Nevertheless, our experiments show that gaditc expression over the séf of program variables :
tioned symbolic execution can have a significant speedup ove branchi f(c), wherec is a conditional expression ovéf

state-of-the-art methods in KLEE on these benchmarks. andif(c) represents the branch taken by the execution.
To sum up, our main contributions are listed as follows: The else-branch is represented dfyf—c).

« We propose a new postconditioned symbolic executiQgii, proper code transformations, the above instructiqresy

method for identifying and eliminating common pathy e g fficient to represent the execution path of arbitrary C
suffixes to mitigate the path explosion problem. code. For example, iptr points to &, *p: =5 can be

« We implement a prototype software tool based Ofqeled a$ f (p==&a) a: =5.And if g points to&b, g- >x
KLEE [6] and experimentally compare our new method_15 can be modeled aif (g==&b) b.x: =10. For a

with the _state-of-the-art techniqges.) complete treatment of all instruction types, please refehé
« We confirm, through our experimental analysis of reayigina| dynamic symbolic execution papers on DART [1],
world applications, that redundancy due to common pagh ;T [3], or KLEE [6]
sufﬂr)](ej IS bf?th gbundan(tj and deesprez;\)d, ar;d oulr NEWA concreteexecution of a deterministic sequential program
method is effective in re upmg_t € number of exp oreg fully determined by the test input. Let be a test input.
path as well as the execution time. Let pathm = Iy -5 13 -2 1p... =% 1, be the sequence
The remainder of this paper is organized as follows. Wt events executed under test input A suffix of 7 is a
first establish the notation and review existing technicues sypsequence’ = i; <= I, ... <= 1,,, where0 < i < n. If
Section II. Then, we present our postconditioned symbolige denote the concrete execution by the fairr), then the

execution method in Section 111, followed by eXperiment%orresponding Symbo”c execution is deno(@dﬂ—), wherex
results in Section IV. We review related work in Section Vimeans that the test input is arbitrary.

and finally give our conclusions in Section VI. The set of all possible symbolic executions of a program
can be captured by a directed acyclic graph (DAG), where
1. PRELIMINARIES the nodes are control locations and the edges are instnsctio

{hat move the program from one control locatioto another
control location!’. The root node is the initial program state,
We consider a sequential prograf with a setV of and each terminal node represents the end of an execution. A

program variables and a sktstr of instructions. Let/;,, C V non-termlnalvpzoegg may have one outgoing edge, which is
be the subset of input variables, which are marked in tifé the formi — "', or two outgoing edges, each of which
program as symbolic, e.g., usimdpar x: = synbolic(). is of the form! lfﬁ? I’. The goal of symbolic execution is
The goal of test generation is to compute concrete values forcompute a sef” of test inputs such that, collectively, they
these input variables such that the new test inputs, colidygt cover all valid paths in the DAG.
can cover all possible execution paths of the program. Algorithm 1 shows the pseudocode of the classic symbolic
We assume an active testing framework [9] wheredalf execution procedure, e.g., the one implemented in KLEE.
tectablefailures are modeled using a speaalort instruction. Given a programP and an initial state, the procedure keeps
The reachability ofibort indicates the occurrence of a runtimediscovering new program paths and generating new testsnput
failure. For example, instructiomssert (c¢) can be modeled with the goal of covering these paths. That isriis a valid
asif(!c)abort, instructionx=y/ z can be modeled as path of the progran® under some test input, it should be able
i f(z==0)abort;else x=y/z, and instructiont - >k=5 to generate test input € 7 that replays this path.
can be modeled asf (t ==0) abort; el se t->k=5.Con- In this algorithm, a program state is represented by a tuple
sider that abort may appear anywhere in a sequential pathjaon, [, mem), wherepcon is the path condition along an
general, detecting the failures requires the effectiveecaye execution and is a control location anerem is the memory

In this section, we review the classic algorithm for testeca
generation based on symbolic execution.

of all valid execution paths. map. For each program variablec V, its symbolic value
Let instr € Instr be an instruction in the program. Anis represented by the expressiomem[v]. The initial state is
execution instance ofnstr is called an event, denoted = (true, lini, memini:), meaning that the path conditigreon

(1, instr,l"), wherel andl’ are the control locations before ands ¢rue and l;,;; is the beginning of the program. We use
after executing the instruction. A control locatiors a place st ack to store the set of states that need to be processed by
in the execution path, not the location of the instructio.(e the symbolic execution procedure. Initiallyt ack contains

line number) in the program code. For examplejiftr is the initial state only. Within the while-loop, for each &tat
executed multiple times in the same execution path, e.genwh{pcon, I, mem) in the stack, we first find the successor state,
instr is inside a loop or a recursive function, each instance when instr is an assignment, or the set of successor states,

when the instructions are branches. For each successer stat IIl. ELIMINATING REDUNDANCY USING
we compute the new path conditigrion’ and the control POSTCONDITIONEDSYMBOLIC EXECUTION

location!’. —
A. A Motivating Example

Algorithm 1 StandardSymbolicExecution()

In this section, we illustrate the main idea behind postcon-

;; 'ng;it;tfs:(?nga{tg”)?’memmm’ ditioned symbolic execution using an example. Consider the
3: while (stack is not empty) program in Figure 1, which has three input variabésb,

‘5‘ igcpfoil)l?; Tif;@;';ii ;Eats)TZClljll’]F()joe[;?e;m) ¢ and three consecutivef - el se statements. The goal is

5 fgr each (eventl ™% 1 to compute a.set of tgst inputs, each of which has cpncrete
7 if (instr is abort) values for all input variables, to exhaustively cover thédva

8 return (; //BUG_FOUND; execution paths of the program. Since the three branching
1% e'si 'f_(gslffe ';:ﬂt Znem), statements are independent from each other, there®ares

11 Ti=TU{r} ’ distinct execution paths. Classic symbolic execution gool
12 else if (instr isif(c)) would generate eight test inputs. The covered paths of this
= gte;g—ksﬁgr‘]?ég;:&g ; ', memy; example, numbered from 1 to 8, are shown in Figure 1 (right).
15: else if (instr is v = exp) For instance, P1 is a path that passes through the if-branch a
16 nextstate« (pcon,l’, mem[v < exp)); Line 1, the if-branch at Line 3, and the if-branch at Line 5.

17 stack.push(nexstate);

b ot 1: if (a<=0) res = res+l; Pl P2 P3 P4 P5 P6 P7 P8

20 end if 2: else res = res-1;, ----------------o-ooo-

g% i:tﬂmWh;I—? 3: if (b<=0) res = res+2;

11 1 1
[0
4: el se res = res-2; 3 3 4 4
_p [0 L
There are four types of events that can move the progragh I :‘ (c<=0) res = res;?; 5 6 5 6
from location! to location?’. - eise res = res-s L
If th tis 4 1/, th boli t d
, eeventls — ' € symbolic execution proce ureFig. 1. A program with three branches and eight paths.
finds a bug and terminates.

. If the event is! "% /', the symbolic execution path Clearly, the number of paths of a program, like the one
reaches the end. in Figure 1, can be exponential in the number of branch
. If the event isl “==" I’, the new memory mamem’ conditions—the worst case is when the branch conditions are
is computed by assigningzp to v in mem, denoted completely independent of each other. However, although th
mem(v < exp]. eight paths in Figure 1 are different, they share common path
o If the event isl Zji)) l/' the new path COﬂditiOpCO’n/ is suffixes. For instance, the suffix. — 3 — 5 is shared by
computed by conjoiningcon with ¢, denotedpcon A ¢. Paths No. 1 and No. 5; and the suffix. — 6 is shared by
Since we use a stack to hold the settofbe-processed Paths No. 2, No. 4, No. 6, and No. 8. Since the goal of testing
states, Algorithm 1 implements a depth-first search (DF$) to uncover bugs, once a path suffix has been tested, we
strategy. That is, the procedure symbolically executeditse Should not explore it again in the future.
full path toward its end before executing the next paths. On aUsing the information shown in Table I, we first show
uniprocessor machine, the set of paths of a program would few standard symbolic execution works. Then, we show
executed sequentially, one after another. In addition t& DFOW postconditioned symbolic execution works on the same
other frequently used search strategies include breauth-fexample. This would explain the reason why our new method
search (BFS) and random search. These alternative seateg§n achieve the same exhaustive path coverage, but negds onl
can be implemented by replacing the stack with a queue %©ut of the 8 test inputs computed by the standard method.
some random-access data structures. Columns 1-4 illustrate the process of running standard
Although the classic symbolic execution procedure in Algssymbolic execution on the program in Figure 1. Column 1
rithm 1 can systematically generate test inputs that cioliely shows the index of the path (numbered from 1 to 8). Column 2
cover the entire space of paths up to a certain depth, tslegows the sequence of branches taken by the path. Column 3
number of paths (and hence test inputs) is often extremelyows the path condition accumulated by symbolic execution
large even for medium-size programs. Our observation is that each branch. Column 4 shows at which step the constraint
in practice, many program paths share common path suffixeslver is invoked to check the satisfiability (SAT) of the Ipat
Since the goal of software testing is to uncover bugs, ongendition, to compute the test input.

a path suffix is tested, there is no need to generate new tes€olumns 5-7, in contrast, illustrate our new method. Col-
inputs to cover the path suffix again in the future. umn 7 shows the summary of explored path suffixes, which
In the remainder of this paper, we shall present posts computed for each if-else statement, after the execwtion

conditioned symbolic execution that is able to identify anthis path terminates. In contrast to the original path ctoali)
then eliminate such redundant path suffixes. In the best cab®wn in Column 3, the new path conditighin Column 5 is
scenario, removing such redundant paths can lead to the conjunction ofp with the negated postconditiofil,,]
exponential reduction in the number of explored paths. at location/—it is worth pointing out that the postcondition

IT,0s¢[{] is computed at the end of the previous symbolithe constrainta > 0). Once it reaches Line 3, our pruning

execution path. algorithm shows thaty’ = ¢ A —true is unsatisfiable, and
For path No. 1, since the summary does not yet exist whérerefore symbolic execution will not go beyond Line 3. In

we compute the path conditiafi, we assume thdi,.s[l] = this case, the test input computed at Line 2 cambel,b =

false for every locationi. x, ¢ = %, wherex means that is immateriathich of the four

Therefore, the new path conditions at Lines 1, 3 and fath suffixewill be executed (all of them have been explored
remain the same; they afe < 0), (a < 0) A (b < 0) and before).
(a <0)A(b<0)A (c <0), respectively. A test input such At the end of path No. 5, we compute the summary
asa = 0,b = 0,c = 0 can be computed by solving the patttonstraints. At this time, all postconditions becomee, indi-
condition(a < 0) A (b < 0) A (¢ <0) at Line 5. cating that no future symbolic execution is needed. Theegfo

At the end of Path No. 1, we summarize its path suffipaths No. 6-8 are skipped.
by performing a weakest precondition computation. Here, weFor ease of comprehension, the program used in this exam-
informally explain how the postconditions in Column 7 argle is over-simplified because there are no data or control de
obtained. At the end of executing path No. 1, we scan the pgténdency between the conditional expressions in the besnch
in reverse order to find the last branch instruction, whicihé In nontrivial programs, the computation of postconditiasis
one at Line 5. Since the branch has been covered, we recordre complicated and the conditional expressions can be
the summary constrairiz < 0). Similarly, for the branch at transformed due to data dependency. In the rest of thisosecti
Line 3, we record the summary constrajiht< 0) A (¢ < 0), we present algorithms that handle the general programs.
which corresponds to the path suffix that passes through Line
3 and Line 5. For the branch at Line 1, we record the summarys - Qverall Algorithm
constraint(a < 0) A (b < 0) A (¢ < 0), which corresponds to
the path suffix that passes through Lines 1, 3, and 5.

Path No. 2 starts from thel se-branch at Line 6. The

The pseudocode of our postconditioned symbolic execution
is shown in Algorithm 2. The overall flow remains the same as
. o in Algorithm 1. However, there are several notable addgion

or|g|_nal path condition isp = (a < 0) A (b < 0) /\ (¢ > 0) We maintain a global key-value table call&d,,[], which

at Line 5. In our new method, the path constraint should t?ﬁ:‘aps a control locatiohin the execution path to the summary
¢’ = ¢pA—=(c <0), wheree < 0 is the summary of the aIreadyH
explored path suffix. Since’ = ¢, we do not gain anything |
by applying this reduction. A test input such as= 0,b =

post[l] Of all explored path suffixes originated from the
ocation/. Such summary table enables early termination that
Al : L leads to pruning of partial or whole paths. In additional to
0,c =1 can be computed by solving the path condition fhe case wherenstr is halt at Line 9, we also terminate the

Line 5. . . ,
At the end of path No. 2, we know that the brancﬁorward symbolic execution whepconAc) — I, [I'] holds

characterized by(¢c < 0) has been explored. Furthermoreunder the_c_:urrent memory map at Line 14. In this case, the
the branch characterized by > 0) has been explored. path condition(pcon A ¢) is fully subsumed by the summary

Therefore, the combined postcondition at Line 5 becomeH ost[!'] Of all explored path suffixes originated from the next
(c< O)\/(; > 0) = true. We propagate the result backward t(g:ontrol location!’. We can terminate early and compute the

Line 3, where the postcondition {& < 0) Atrue, which is the nzm tseusftﬁ;gzur:a?,tetgﬁezglmt;et;ic?euss{g dfrom this point on, all
same agb < 0). Combining it with the previously computedp y '

postoonditon, we have(s < 0) (¢ < 0)) v (o < 0 which (o2 STERR B0 8 CEees e T and 17,
is the same agh < 0) at Line 3. Similarly, the postcondition P P '

at Line 1 is updated téa < 0) A (b < 0). At the eqd of each execution pgt.h, when the curnigntr is
. halt, we invokeUpdatePostcondition(L, true) at Line 12 so
Path No. 3 starts from thel se-branch at Line 4 and » . .
: : . . .a weakest precondition computation can start from terminal
then reaches Line 5. Since we are interested in explori

n . - .
path suffixes not yet covered at Line 5, we check whethggde L with the initial logic formulatrue . The second

¢’ = ¢ A —true is satisfiable. Here-true is the negation of proce.(.jure. call happens at Line 17 when the cgrrent path
the postcondition computed at the end of path No. 2. Singgndmon 's subsumed by the summary [at In this case

: L /
¢’ is unsatisfiable, the symbolic execution terminates before. invoke UpdatePostcondition(’, Tlyos: [!']) SO a weakest

) . o . Fecondition computation can start frdhwith the initial logic
executing Line 5, because continuing the execution woutd T .
o&mula being its current summary. This new procedure, to

lead to any new path. In this case, th.e. test mput computge discussed in Section IlI-C, updates the summaries for all
by the solver by solving the path condition at Line 4 can be

a = 0,b = 1,c = %, meaning it is immaterial whether Linecontrol locations along the current path.
5 or Line 6 is executed (both branches have been explored

before). C. Summarizing Common Path Suffixes

At the end of path No. 3, we compute the summary We construct the summaries for visited control locations
constraint(b < 0) v (b > 0), which is the same asue at incrementally. Initially II,,s[I]] = false for every control
Line 3. We compute the summary constrajnt< 0) A (b < locationl. Whenever a new test input is generated for the path
0) V (a < 0), which is the same a&: < 0) at Line 1. w, we updatell,,[!] for all control locations inr based on

In our method, path No. 4 will be skipped. the weakest precondition computation alongn the reverse

Path No. 5 starts from thel se-branch at Line 2 under order. The weakest precondition, defined below, is a logical

TABLE |

SYMBOLIC COMPUTATION FOR THE PROGRAM INFIGURE 1

Path | Br No. | Path condition¢ (original) TestGen || Path conditiong” (with pruning) TestGen Postconditions
T [(@a<0) @<0) @<OAG<O)A(c<0)
3 | (a<0)A(b<0) (@a<0)A(b<0) (b<0)A(c<0)
5 (a<0)A(B<0)A(c<0) SAT (a<0)A(B<0)A(c<0) SAT (¢ <0)
T [(a<0) (@<0) @<0A(B<0)
2 3 (a<0)A(B<O (a<0)A(b<0) (b<0)
6 (a<O)ADBLO)A(c>0) SAT (a<OANDBLO)A(c>0)A=(c<0) SAT true
T [(@a<0) (@a<0) @<0)
3 4 (a <0)A(b>0) (a <0)A(b>0) SAT true
5 (a<0)A(>0)A(c<0) SAT (a <0)A(b>0)A(c <0) A —true true
1 (a <0) (skipped)
4 4 (a<0)A(b>0)
6 (a <0 ADB>0)A(c>0) SAT
2 (a>0) (a>0) SAT true
5 3 (a>0)A(<0) (a > 0) A (b <0)A —true true
5 (a>0)ANDB<0)A(c<0) SAT true
2 (a>0) (skipped)
6 3 (a>0)A(DB<O
6 (a>0)A(b<0)A(c>0) | SAT
2 (a>0) (skipped)
7 4 (a>0)A(b>0)
5 (a>0)ANb>0)A(c<L0) SAT
2 (a>0) (skipped)
8 4 (a>0)A(b>0
6 (a>0)AD>0)A(c>0) SAT

Algorithm 2 PostconditionedSymbolicExecution()

« For a nodel with the outgoing edgé s U, wpll] =

1: init_state<— (true, linit, meminit); wp[l’] A c.
2: stack.push(initstate); . .
3: while ?stac(k is not e)mpty) The pseudocode for _updat!rfgpost[]_ is show_n as the pro-
4. (pcon,l,mem) + stack.pop(); cedureUpdatePostcondition()in Algorithm 3. Sincell,,,; [{]
5 if (peonis Sa"Sf'abi'SS#”?emem) is defined as the summation of multiple paths, we accumulate
?Z for i?"’zcgs?r'ﬁgtébﬁ)l at location() the effect of newly computed weakest precondition at céntro
8: return §); //BUG_FOUND; location by I, [l] = I,0s[l] V wpl[l]. Note that updates
9 else if (instr is halt) happen only whei is the sink of a branch statement as these
1(1): ;Zsﬁﬁe{%‘fm’mem)i are the only control locations where pruning is possible.
12: UpdatePostcondition(L, true); Example 1:Consider the motivating example introduced
13 else if (instr is if(c)) in Section lll-A. At the end of executing path No. 1, we
14 it (peon Ae = Tlpost[F]) invoke UpdatePostcondition(), which carries out the summary
15: T < Solve (pcon,mem); .)
16: T=TU{r} computation as follows:

. HY ! 17y
i;j els(ladeatePostcondmon(l »post [']); location instruction weakest precondition rule applied
19: next state<— (pcon A c,l’); TF(a<0)
20: stack.push(nexstate); lo — (a<O)ADB<O)A(c<0) wplli]Ac
21: end if res:=res+1

< <

22: else if (instrisv :=exp) h if(b<_0; Cofnfos O wpldlleo/s
23: next state<— (pcon,l’, mem|v < expl); lo —= (b<0)A(c<0) wplls]Ac
24: st_ack.push(nexstate); I3 res:=rest2 (c<0) wplid[ezp/v]
25: end if TFe<0)
26: end for N — (c<0) wplls]Ae
g en(fr\}\(/jhillfe ls i e pdolnle
29; return 7T ls true terminal

Algorithm 3 UpdatePostconditiofi(¢)

constraint that characterizes the suffix starting from ation 1

[of the current execution path. [fis a terminal nodel,

initially wp[L] = true. If [is an internal node with an existing

summaryo, initially wp[l] = ¢. The propagation of weakest
wnstr

precondition at alongl — [’ is based on the type a@fistr
as following:

« For a node with the outgoing edgeé "==" I/, wpll] is
the logic formula computed by substitutingwith exp

FESoo~Noas wn

Let path be the stack of executed events;
wpll'] + ¢;
while (event =path.pop() exists)
Let! ™% 1’ pe the event;
if (instrisv:=exp)
wp(l] < wp(l][exp/v];
else if (instris if(c))
wpll] < wp[l'] A¢;
Mpost[l'] < Hpost[l'] V wp|l'];
end if
end while

in wp[l']. That is,wp[l] = wp[l'][exp/v].

D. Pruning Redundant Path Suffixes With BFS, the symbolic execution procedure would have

We compute the summary of previously explored p(,ﬂ:}‘.}/mbolically propggated tr_le path condition along all (_eight
suffixes in Algorithm 2, with the goal of using it to prunepaths, before solving the first one to compute the test input.

redundant paths. The application of summary is enabled N9 the process, theltabléépostrg] IS ehmpr because there
Line 14, where the path conditignron of current execution 90€S Not yet exist angxploredpath. By the time we compute

= has been computed. Hergon denotes the set of programthe test |_nputs for path No. 1 and No. 2, an(_j update the table
states that can be reached from some initial statesrvia o[], it would have been too late. In particular, we would

Algorithm 2 revises Algorithm 1 to enable common patlj?ave already constructed the path conditions for all theroth
suffix elimination as follows: six paths.

o If pconAc — I 1], N0 Nnew path suffix can be reached
by extending this execution; in such case, we forcer. Controlling the Cost of Pruning
symbolic execution to backtrack fromh immediately, . . :
thereby skipping the potentially large set of redundant In our implementation, the size of the talilg,..[] as well

test inputs that would have been generated for all the@%the size of eac_h logic constraliif,.. L] may be large, e.g.,
path suffixes. when the execution paths are long and many. The summary

o If peon A ¢ # T l], theremaybe some path suffixes II,0s: 1], in particular, needs to be stored in a persistent media,

that can be reached by extending the current path fr eaning that the keys of the table_are the global control
location!. In this case, we continue the execution as i cations, and the values are the logic formulas represgnti

the standard symbolic execution procedure. post[I] @t global control locatiori. In general, these logical
ing th Limol _ h lidi formulas can become complex.
During the actual implementation, the validity pfon Ac = = parefore, in practice, we use various heuristic approxi-

HP?“.[Z] can be.decided .using a constraint solver to check tPr‘?ations to reduce the computational cost associated wéth th
satisfiability of its negationgicon A ¢ A —I,0s:[1])-

le 2- der th - e introd construction, storage, and retrieval of the summaries.goat
_ Example 2:Consider the motivating example introducegs 1, reqyce the cost while maintaining the soundness of the
in Section 1lI-A. When executing path No. 3 in Table |

bolicall X h h giti . pruning, i.e., the guarantee of no missed paths.
symbolically up to Line 4, we have pat con ttigaon. = We prove that, in general, any under-approximation of
(a < 0) A (b > 0). The next instruction isf(c < 0). At

. I1,,:[]] can be used in Algorithm 3 to replaég,,[!] while

/ P
the_next_ control/loca‘uori, the summary of explored pathmaintaining the soundness of our redundant path pruning
suffixes isIl,s [I'] = true. To check whethefa < 0) A (b >

0 <0 hold heck th tisfiability of it method; that is, we can still guarantee to cover all validhpat
) A (t'c -)<_6 trueb OOS’ We<coec € saols 'a ”Iy .?. S of the program. In many cases, using an underapproximation
negationi(a < 0) A (b > 0) A (c < 0) A —true. Obviously itis - [[] to replacell,,[l] can make the computation signif-

. . . post
unsa‘u_sflable as the form ula is equwalentfatse..) .. icantly cheaper. The reason why it is always safe to do so is
While running Algorithm 2, we would go inside the if-

that, by definition, we havél___.[l] — II,,[l{]. Therefore, if
branch at Line 14. By invoking the constraint solver orapcon/)\/c) T post] postl]

. s¢[l] holds, so doegpcon A ¢) — o [I].
pecon = (a < 0) A (b > 0), we can compute a test input . P L
In practice, we make two types of under-approximations.
such asa = 0,b = 1,¢ = *, wherex means the value of

does not matter. o We use a hash table with a fixed number of entries

After that, and before backtracking, we also invole- to limit the storage cost fofl,,.(l]. With a bounde/d
datePostcondition() to summarize the partial execution path t@ble, however, two global control locatiorisand !

to include it into the summary table, as if we have reached ™May be mapped to the same hash table entry. In this
the end of path No. 3. case, we use a lossy insertion: Upon a key collision,

i.e., key(l) = key(l'), we heuristically remove one of

the entries, effectively making false (hence an under-
E. The Impact of Search Strategies approximation).

In Algorithm 2, the states waiting to be processed by the We use a fixed threshold to bound the size of the
symbolic execution procedure are stored in a stack, which individual logic formulas ofT,..[l]. That is, we replace
leads to a Depth-First Search (DFS) of the directed acyclic Line 9 in Algorithm 3 by the following statement:
graph that represents all possible execution paths. At any i (Siz€llpos:[l]) < bd) IIpost[l] < Mpost[l] V wp;
moment during the symbolic execution, the talilg,,|]
has the up-to-date information about which common pathA main advantage of our new pruning method is that it
suffixes have been explored. This is when our postconditionallows for the use of (any kind of) under-approximation o th
symbolic execution method performs at its best. tableIl,, [] while maintaining soundness. This is in contrast

In contrast, if Algorithm 2 is implemented by replacingo ad hocreduction techniques for test reduction, where one
the state stack with a queue, it would lead to a Breadthas to be careful not to accidentally drop any executions tha
First Search (BFS) strategy. This is when our common pattray lead to bugs. Using our method, one can concentrate on
elimination method performs at its worst. To see why usirgy tlexploring the various practical ways of trading off the gngn
BFS strategy makes it impossible to pruning redundant patpgwer for reduced computational cost, while not worrying
consider the running example introduced in Section IlI-A. about the soundness of these design choices.

V. EXPERIMENTS For these experiments, we have used the symbolic

To evaluate the effectiveness of postconditioned symboff@mmand-line arguments artdin as inputs of the pro-

execution in pruning redundant test cases, we consider #{@ms. while bounding the string sizes of the content of each
following research questions: argument to 2. The programs are all terminating due to the

. . icatiorroPer test harness and the bound on the size of the symbolic
« How much redundancy is there in real-world applications : .
due to the common path suffixes? iNputs. All experiments were performed on a computer with a
Pg) . 2.66 GHz Intel dual core CPU and 4 GB RAM.
o« How much computational overhead does the pruning _. .
Figure 2 shows the scatter diagram that compares the
method have? o . .
. . erformance of postconditioned symbolic execution (PSE)
o With such computational overhead, are there net benefi : Do A
for applying the pruning? agalnst KLEE. The X-axis and Y-axis give the execghon time
. ' . _in seconds of all the 94 benchmarks. If the experiment of a
~ We have implemented the proposed method in KLEE, Whighsnchmark exceeds the time limit, we show its execution time
is a state-of-the-art symbolic execution tool built on th&/M 55 10800 seconds in the figure. This figure clearly indicates
platform. It provides stub functions for standard libragjls, at the standard symbolic execution is more efficient when a
e.g., usingucl i bc to modelgl i be calls, and concrete-valuepenchmark is small, and postconditioned symbolic exenutio
based under-approximated modeling of other external fmct gi41ts to win where the size of benchmarks become larger.
calls. In practice, this is a cr_u0|al_ feature because_ sys@8 This is what we have expected as postconditioned symbolic
as well as calls to external libraries are common in reallivorgyacution incurs significant overhead, which is to be preskn
applications. in Section IV-C. Due to page limit and the interest in the sase
when applying standard symbolic execution is challendiog,
A. Subjects and Methodology the rest of the section we only gives the experimental result
f the 55 benchmarks that take PSE less than 3 hours and take

We have conducted experiments on a large set of C p LEE more than 300 seconds(5 minutes) to complete

grams from the GNU Coreutils suite, which implements th Th . | | , in Table II. Col 1
basic commands in the Unix/Linux operating system. These e experimental results are given in Table 1. Column

programs are of medium size, each with between 2000 to 6 I55s the names of the benchmarks. Columns 2 to 4 show the

lines of code. They are challenging for symbolic executiorﬁumberOf paths explored, the number of instructions exetut

tools partly because they have extensive use of error cnhlgckf’;]nd the time ug_agetm sec%néjstb):c KLEE't Colg_rtrjns ‘Zto 7 ih?w
code, pointers, and heap allocated data structures suibtsas "€ corresponding types ot data for postconditioned syrabo
and trees. execution. The last three columns show the improvement

Each program is first transformed into the LLVM bytecodg‘| ttrt]arms dOf_ thte r(:_ductlon rat|(|)| n t?he numbsr of etxplpretcri]
using the standard Clang/LLVM tool-set. The symbolic exd2dihs and Instructions, as well as the speedup ratio in the
ecution time, of postconditioned symbolic executionrove

cution procedures take the LLVM bytecode program and a .) o ; .
of user annotated symbolic variables as input. The symboli EE. With pruning, postconditioned symbolic executide t

inputs are variables that represent the values of the pmgranu;‘be;cg patt)hstriq;)lg e1d_htot "?‘Ch'e"e exhaustive ccz\éera%%(;s
command-line arguments. reduced by about 4.3X. That is, on average more than 6

of paths are considered redundant by our method. Most of the
reduction actually comes from path-suffix elimination eath

B. Effectiveness of Pruning than whole-path elimination. This is indicated by the cotum
that compares the number of executed instructions. Cordpare
100000 gl with KLEE, postconditioned symbolic execution reduces the
PG executed instructions by about 14.5X. The results confirm
o :_‘{'i our conjecture that redundancy due to common sub paths is
1000 ./-9,11 ¢ abundantand widespreadin real-world applications and our
z ORI new method is effective in eliminating the redundant paths.
A P A T The speedup in time, however, is less drastic. Other than
& e the 15 benchmarks that KLEE cannot complete within the
5 /,/' three hour time whereas our method can, the average speedup
e . achieved by postconditioned symbolic execution is 2.0XsTh
o ST 10 100 1000 10000 100000 is in contrast with 4.3X and 14.5X in the path and instruction
— KLEE Time(s) reductions. In Section IV-C, we give the reasons.

Fig. 2. KLEE v.s. postconditioned symbolic execution.

C. Pruning Overhead

We evaluate the effectiveness of our pruning method byTh_ere are two major sources of overhead incurred by the
comparing postconditioned symbolic execution against ELEPruning.
which uses the standard symbolic execution procedure des Weakest precondition computation: After each path ex-
scribed in Algorithm 1. We run both methods on each bench- ploration, we need to conduct weakest precondition com-
mark program for up to 3 hour (10800 seconds). putation along the path, which increases the computa-

TABLE Il
COMPARING KLEE WITH POSTCONDITIONED SYMBOLIC EXECUTION

[Test Program]| Standard Symbolic Execution (KLEE) | Postconditioned Symbolic Execution | Performance Improvement |
| Name |[Explored paths[Explored insts] Time (sec) || Explored paths] Explored insts[Time (sec) || Path ratio [Inst ratio [Speedup in time|
arch 1,375 12,230,344 1994.71 246 1,855,846 752.15 5.6X 6.6X 2.7X
base64 1,058 941,7607 1511.49 540 4,019,057 1354.56 2.0X 2.3X 1.1X
chcon - - >3h 1,227 7,915,005 5336.64 - - 2.0X
chmod - B >3h 1,045 4,233,560 8198.14 B - 1.3X
comm 2,522 22,936,623 4087.59 1,217 10,112,737 3607.04 2.1X 2.3X 1.1X
cp - - >3h 1,236 11,813,098 4245.87 - - 2.5X
csplit 3,235 31,998,354 10444.05 1,763 13,899,960 7154.76 1.8X 2.3X 1.5X
dircolors 1,178 13,579,980 1655.75 237 1,059,862 1081.14 5.0X 12.8X 1.5X
dirname 564 4,923,714 439.13 124 80,772 98.58 4.5X 61.0X 4.5X
du 949 628,662,146 2646.26 166 12,362,212 962.24 5.7X 50.9X 2.8X
expand 762 7,820,299 456.87 83 672,604 107.92 9.2X 11.6X 4.2X
expr 651 3,919,884 400.52 136 62,346 221.13 4.8X 62.9X 1.8X
factor - - >3h 1,260 35,709,256 3878.14 - - 2.8X
fmt 792 6,489,860 1770.91 306 2,777,479 736.24 2.6X 2.3X 2.4X
fold 967 10,143,108 1063.06 115 1,397,060 697.08 8.4X 7.3X 1.5X
ginstall 4,911 48,857,663 10467.79 407 710,212 2141.11 12.1X 68.8X 4.9X
head - - >3h 1,285 42,104,790 5019.37 - - 2.2X
hostid 1,375 12,278,096 1360.31 255 2,824,828 731.23 5.4X 4.3X 1.9X
hostname 1,375 13,029,976 1292.04 238 2,986,780 667.59 5.8X 4.4X 1.9X
id 1,340 54,103,365 1218.79 214 4,163,970 691.93 6.3X 13.0X 1.8X
join - - >3h 1,256 31,915,817 6445.28 - - 1.7X
link - - >3h 1,328 42,390,898 6845.52 - - 1.6X
In 1,510 19,212,957 5714.31 238 894,724 2998.6 6.3 21.5X 1.9X
logname 1,375 12,247,184 2029.9 246 1,847,189 1576.5 5.6X 6.6X 1.3X
Is - - >3h 735 121,864,375 3583.25 - - 3.0X
mkdir - - >3h 903 7,388,596 4855.76 - - 2.2X
mkfifo - B >3h 967 8,538,955 4252.86 - - 2.5X
mknod 1,756 15,913,533 2275.7 824 7,958,409 4814.71 2.1X 2.0X 0.5X
mktemp 3,279 31,495,317 5299.09 1,046 11,084,508 4496.36 3.1X 2.8X 1.2X
mv - - >3h 1,137 21,881,541 6077.27 - - 1.8X
nice 637 4,894,266 1017.04 144 420,973 597.13 4.4X 11.6X 1.7X
nl - - >3h 1,164 9,486,519 7914.07 - - 1.4X
nohup 924 9,846,460 624.17 822 8,517,887 1030.96 1.1X 1.2X 0.6X
od 2,851 43,443,017 4409.97 745 7,691,252 1584.71 3.8X 5.6X 2.8X
printenv 3,663 8,047,843 2637.18 924 2,118,129 1243.32 4.0X 3.8X 2.1X
printf - - >3h 1,347 11,438,582 7119.41 - - 1.5X
ptx 1,914 46,610,662 3312.43 502 15,765,823 1081.34 3.8X 3.0X 3.1X
readlink 745 5,598,617 643.47 585 3,963,112 506.84 1.3X 1.4X 1.3X
m 482 7,340,679 702.99 138 267,419 524.23 3.5X 27.5X 1.3X
setuidgid 1,848 32,832,492 4646.58 363 661,059 784.72 5.1X 49.7X 5.9X
shuf 1,611 14,473,864 6240.45 580 4,152,250 2653.32 2.8X 3.5X 2.4X
sleep - - >3h 992 12,346,738 6474.45 - - 1.7X
sort 1,801 22,398,578 2114.36 537 2,703,899 1326.72 3.4X 8.3X 1.6X
split 738 4,421,955 460.14 228 108,056 226.37 3.2X 40.9X 2.0X
touch 1,288 2,337,850 1303.89 383 1,559,711 854.31 3.4X 1.5X 1.5X
tr 1,690 16,302,848 3323.09 789 4,855,035 2080.26 2.1X 3.4X 1.6X
tsort 580 5,176,989 640.34 116 932,539 478.01 5.0X 5.6X 1.3X
tty 1,927 20,813,531 3288.5 747 5,515,712 1062.27 2.6X 3.8X 3.1X
uname - - >3h 1,255 11,873,393 5359.82 - - 2.0X
unexpand 812 8,682,733 77177 155 1,144,891 635.85 5.2X 7.6X 1.2X
uniqg 939 8,559,681 437.42 355 402,476 424.86 2.6X 21.3X 1.0X
unlink 1,375 12,939,395 2164.11 615 10,270,941 1266.16 2.2X 1.3X 1.7X
uptime 577 5,475,778 709.71 183 908,314 729.13 3.2X 6.0X 1.0X
users 577 5,257,283 712.63 171 921,753 695.57 3.4X 5.7X 1.0X
whoami 1,375 12,437,691 1909.14 152 606,472 1108.31 9.0X 20.5X 1.7X
Average - - - - - - 4.3X 14.5X >2.0X

tional cost as well as memory usage as we need to stesecution. It is worth pointing out that, despite the large

complex postconditions at control locations. computational overhead, postconditioned symbolic execut
o Subsumption check: We need to conduct SMT solvingas led to considerable time speedup for large programs.

to check whether the current execution is subsumed by

previous paths. The solving is expensive and it may also V. RELATED WORK

increase the internal SMT memory consumption. As we have mentioned earlier, there is a large body of work
Table 11l shows the pruning overhead. Column 1 lists then test input generation based on symbolic execution [1], [2

benchmark names. Columns 2 to 4 compare the memd8y, [4], [5], [6]. A major obstacle that prevents these noath
usage between KLEE and our approach. On average déwm getting even wider application is thgath explosion
approach uses four times more memory than KLEE. The lgsioblem. Although there are efforts on mitigating the prob-
four columns (Columns 5 to 8) show the time breakdown &é¢m, e.g., by using methods based on compositionality [10],
postconditioned symbolic execution. Column 5 and 6 show théstraction-refinement [11], interpolation [12], [13]4]1[15],
time spent on subsumption check and weakest preconditemd parallelization [16], [17], [18], [19], [20], path exyion
computation, respectively. Column 8 shows the percentagenains a bottleneck in scaling symbolic execution to large
of the pruning overhead time against the total time given applications.
Column 7. On average, the majority of the time (60%) is spentMcMillan proposed a redundancy removal method for sym-
on subsumption check and weakest precondition computatibolic execution, calledazy annotation[12]. The method
These computations are not needed in standard symba@nputes an interpolant from an unsatisfiable formula due to

TABLE Il
PRUNING OVERHEAD IN POSTCONDITIONEDSYMBOLIC EXECUTION.

[Test Program]| Memory i Time Breakdown of Postconditioned Symbolic Execution |
| Name || KLEE [Postconditioned SH Postconditioned SE/KLEE| Check time(CT)] WP time(WT) [All time(AT) [(CT+WT)/AT |
arch 64 331 5.2X 33.02 537.2 752.15 0.8
base64 55 216 3.9X 387.22 404.43 1354.56 0.6
chcon - 618 - 2358.57 654.74 5336.64 0.6
chmod - 289 - 1515.52 1678.66 8198.14 0.4
comm 95 463 4.9X 523.56 618.24 3607.04 0.3
cp - 634 - 651.25 826.31 4245.87 0.3
csplit 194 958 4.9X 1072.99 835.48 7154.76 0.3
dircolors 60 583 9.7X 56.26 723.65 1081.14 0.7
dirname 28 103 3.7X 13.21 60.86 98.58 0.8
du 52 451 8.7X 218.25 354.01 962.24 0.6
expand 37 115 3.1X 21.35 59.51 107.92 0.7
expr 66 281 4.3X 66.34 115.43 221.13 0.8
factor - 176 - 826.31 1186.79 3878.14 0.5
fmt 46 316 6.9X 132.36 309.18 736.24 0.6
fold 45 266 5.9X 64.72 416.26 697.08 0.7
ginstall 170 341 2.0X 882.17 581.87 2141.11 0.7
head - 765 - 836.28 1795.57 5019.37 0.5
hostid 68 145 2.1X 308.52 113.91 731.23 0.6
hostname 64 141 2.2X 260.43 121.75 667.59 0.6
id 49 267 5.5X 147.81 326.25 691.93 0.7
join - 811 - 1103.98 1881.47 6445.28 0.5
link - 902 - 1172.65 1134.12 6845.52 0.3
In 136 300 2.2X 1246.61 742.01 2998.6 0.7
logname 63 338 5.4X 60.24 1182.93 1576.5 0.8
Is - 324 - 1362.74 1343.26 3583.25 0.8
mkdir - 979 - 1497.52 1573.77 4855.76 0.6
mkfifo - 856 - 1242.23 1206.85 4252.86 0.6
mknod 98 712 7.3X 1481.27 1548.31 4814.71 0.6
mktemp 125 532 4.3X 1123.12 599.01 4496.36 0.4
mv - 792 - 1138.25 1761.15 6077.27 0.5
nice 45 227 5.0X 101.46 322.46 597.13 0.7
nl - 881 - 1562.86 2774.95 7914.07 0.5
nohup 46 119 2.6X 146.53 360.87 1030.96 0.5
od 73 451 6.2 625.96 780.19 1584.71 0.9
printenv 63 180 2.9X 157.23 607.24 1243.32 0.6
printf - 581 - 1391.78 3230.31 7119.41 0.6
ptx 131 428 3.3X 162.74 482.31 1081.34 0.6
readlink 45 267 5.9X 157.81 206.26 506.84 0.7
rm 38 224 5.9X 98.37 272.17 524.23 0.7
setuidgid 83 217 2.6X 116.34 520.59 784.72 0.8
shuf 85 704 8.3X 486.68 1365.03 2653.32 0.7
sleep - 539 - 1116.35 2631.89 6474.45 0.6
sort 94 750 8.0X 217.54 656.43 1326.72 0.7
split 33 75 2.3X 26.98 121.03 226.37 0.7
touch 67 506 7.6X 43.79 474.87 854.31 0.6
tr 92 767 8.3X 388.64 1063.78 2080.26 0.7
tsort 39 83 2.1X 86.14 208.12 478.01 0.6
tty 82 188 2.3X 120.25 518.39 1062.27 0.6
uname - 764 - 1378.57 1863.06 5359.82 0.6
unexpand 38 249 6.6X 112.45 365.97 635.85 0.8
uniqg 34 104 3.1X 157.63 106.24 424.86 0.6
unlink 62 572 9.2X 114.85 798.95 1266.16 0.7
uptime 42 183 4.4X 83.35 422.12 729.13 0.7
users 38 215 5.7X 89.26 356.78 695.57 0.6
whoami 63 184 2.9X 80.12 616.82 1108.3 0.6
Average - - 4.9X - - - 0.6

the unreachability of certain branch conditions in a pragra execution using the result from over-approximated analysi
The interpolant can be regarded asoamr-approximatedet of and vice versa. However, our new method is significantly
forward reachable states. Jaftgral. [13], [14], [15] proposed different in that our common path suffix elimination method
a similar method in the context of dynamic programming, fas not restricted to the function boundary, and does not need
computing resource-constrained shortest paths and amglyzhe abstract-refinement loop.
the worst-case execution time. Although interpolant is enor There also exist techniques for quickly achieving struaitur
general than weakest precondition, it is also more expenspbverage in symbolic execution [22], [23], [24] or increapi
to compute and requires special constraint solvers. the coverage of less-traveled paths [25], [26]. These igdies
There are also pruning methods based on computing susffer from ours in that they do not attempt to achieve the
maries. For example, Godefroid [10] proposed a function-sugomplete path coverage. Our method, in contrast, focus on
mary based compositional test generation algorithm, whegeund pruning techniques for achieving the complete path
the input-output summary of a previously explored functiogoverage.
is computed and stored into a database; when the function iShe GREEN tool [27] by Visseet al. provides a wrapper
executed again, the symbolic constraints are reused. Migumaround constraint satisfiability solvers to check if theutes
and Sen [11] proposed a demand-driven abstraction-refimemare already available from prior invocations, and reuse the
style hybrid concolic testing algorithm, which can achieveesults if available. As such, they can achieve significant
a similar reduction. Godefroid et al. [21] proposed a conteuse among multiple calls to the solvers during the symboli
positional may-must program analysis to speed up symboéigecution of different paths. GREEN achieves this by diisgjl

constraints into their essential parts and representiagntim [6]
a canonical form. The reuse achieved by GREEN is at a much
lower level. As such, the reuse is orthogonal to the pruning

by our method. Therefore, it would be interesting to see if7]
GREEN can be plugged into our distributed parallel symbolic

execution framework to achieve more reduction—we lea thi
for future work.

The state merging reduction proposed by Kuznetsbv
al. [28] was based on the idea of merging the forwarqg]
reachable states obtained on different paths, which cath lea
to a decrease of the number of paths that
However, the method differs significantly from our work ir{1
that state merging is a reduction based on the forward paths
(prefixes), whereas our method is a reduction based on thd
backward analysis, which computes the summary of pettﬁ]
suffixes. In general, these two techniques are orthogorthl an
may be used together to complement each other.

(8]

[13]

VI. CONCLUSIONS ANDFUTURE WORK

We have presented a new redundancy removal method %l(;lr]
symbolic execution, which can identify and eliminate conmmo
path suffixes that are shared by multiple test runs. We havd
implemented a prototype software tool and evaluated it ah re
applications. Our experiments show that redundancy duel[i6l
common path suffixes are abundant and widespread in practice
and our method is effective in eliminating redundant paths.
However, the speedup in execution time is less impressive
due to memory and computation overheads. In the future, é
plan to more carefully examine the trade-offs between &ifec
redundancy removal and the computational cost of detectiiigl
and eliminating such redundancy. We believe that heusistic
based on static program analysis can make the pruning mprg
efficient. In addition, we plan to develop parallel algonith
that speed up postconditioned symbolic execution.

[20]
VII. ACKNOWLEDGMENTS 21]

This work was supported in part by the National Sci-
ence Foundation of China (NSFC) under grant 61472318,
the National Science and Technology Major Project undgp;
Grant 201272X01039-004, and the National Science Founda-
tion (NSF) under grants CCF-1149454, CCF-1500365, and
CCF-1500024. Any opinions, findings, and conclusions eysg;
pressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies. [24]

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: directedtamated ran- [25]

dom testing.” iINACM SIGPLAN Conference on Programming Language

Design and Implementatipddun. 2005, pp. 213-223.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated wbbox [26]

fuzz testing,” INUSENIX Symposium on Network and Distributed System

Security 2008.

K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit iag [27]

engine for C,” inACM SIGSOFT Symposium on Foundations of Software

Engineering 2005, pp. 263-272.

K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testingd

explicit path model-checking tools,” innternational Conference on

Computer Aided Verification Springer, 2006, pp. 419-423.

[5] J. Burnim and K. Sen, “Heuristics for scalable dynamigt generation,”
in ASE 2008, pp. 443-446.

(2]

(3]

(4 (28]

need to be explore&.

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted auto-
matic generation of high-coverage tests for complex sysggragrams,”

in USENIX Symposium on Operating Systems Design and Impment
tion, 2008, pp. 209-224.

C. S. Pasareanu and W. Visser, “A survey of new trends mkmfic
execution for software testing and analysijternational Journal on
Software Tools for Technology Transfeml. 11, no. 4, pp. 339-353,
2009.

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic exploit generation,” iVSENIX Symposium on Network and
Distributed System SecurjtfFeb. 2011.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Active propgy check-
ing,” in International Conference on Embedded Softwa@08, pp. 207—
216.

P. Godefroid, “Compositional dynamic test generatiom ACM
SIGACT-SIGPLAN Symposium on Principles of Programming- Lan
guages 2007, pp. 47-54.

R. Majumdar and K. Sen, “Hybrid concolic testing,” International
Conference on Software EngineerjrigD07, pp. 416-426.

K. L. McMillan, “Lazy annotation for program testing drverification,”

in International Conference on Computer Aided Verificati@d10, pp.
104-118.

J. Jaffar, A. E. Santosa, and R. \oicu, “Efficient menatin for
dynamic programming with ad-hoc constraints,’AAAl, 2008, pp. 297—
303.

J. Jaffar, A. Santosa, and R. Voicu, “An interpolatiorethod for CLP
traversal,” in International Conference on Principles and Practice of
Constraint Programming2009, pp. 454—-469.

D.-H. Chu and J. Jaffar, “A complete method for symmetguction

in safety verification,” ininternational Conference on Computer Aided
Verification 2012, pp. 616—-633.

C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. GuBdylet, M. R.
Lowry, S. Person, and M. Pape, “Combining unit-level syntbekecu-
tion and system-level concrete execution for testing NASfAvgare,” in
International Symposium on Software Testing and AnahZi98, pp.
15-26.

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Cead‘Cloud9:

a software testing service@perating Systems Reviewol. 43, no. 4,
pp. 5-10, 2009.

M. Staats and C. S. Pasareanu, “Parallel symbolic exgcdor struc-
tural test generation,” international Symposium on Software Testing
and Analysis 2010, pp. 183-194.

J. H. Siddiqui and S. Khurshid, “Scaling symbolic exgon using
ranged analysis,” iPACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applicati@®2, pp. 523—
536.

M. Kim, Y. Kim, and G. Rothermel, “A scalable distributeconcolic
testing approach: An empirical evaluation,”l@ST, 2012, pp. 340-349.
P. Godefroid, A. V. Nori, S. K. Rajamani, and S. TetalGdmpositional
may-must program analysis: unleashing the power of altema in
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages 2010, pp. 43-56.

R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Gedd test
generation for coverage criteria,” MEEE International Conference on
Software Maintenance (ICSM 2010), September 12-18, 2@tisdara,
Romania 2010, pp. 1-10.

X. Ge, K. Taneja, T. Xie, and N. Tillmann, “DyTa: dynamsymbolic
execution guided with static verification results,” limternational Con-
ference on Software Engineering011, pp. 992-994.

X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characterististudies of
loop problems for structural test generation via symbokecation,”

in IEEE/ACM International Conference On Automated SoftwangiE
neering 2013, pp. 246-256.

Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic exd@mn to
less traveled paths,” iACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applicati@fd3, pp. 19-32.
H. Seo and S. Kim, “How we get there: a context-guidedceatrategy

in concolic testing,” iNACM SIGSOFT Symposium on Foundations of
Software Engineering2014, pp. 413-424.

W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: rédggcreusing
and recycling constraints in program analysis,” ACM SIGSOFT
Symposium on Foundations of Software Engineeri@i2, p. 58.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Effiti state
merging in symbolic execution,” ilPACM SIGPLAN Conference on
Programming Language Design and Implementati@@12, pp. 193—
204.

