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Abstract—Symbolic execution is emerging as a powerful technique
for generating test inputs systematically to achieve exhaustive path
coverage of a bounded depth. However, its practical use is often limited
by path explosion because the number of paths of a program can be
exponential in the number of branch conditions encountered during the
execution. To mitigate the path explosion problem, we propose a new
redundancy removal method called postconditioned symbolic execution.
At each branching location, in addition to determine whether a particular
branch is feasible as in traditional symbolic execution, our approach
checks whether the branch is subsumed by previous explorations. This
is enabled by summarizing previously explored paths by weakest pre-
condition computations. Postconditioned symbolic execution can identify
path suffixes shared by multiple runs and eliminate them during test gen-
eration when they are redundant. Pruning away such redundant paths
can lead to a potentially exponential reduction in the number of explored
paths. Since the new approach is computationally expensive, we also
propose several heuristics to reduce its cost. We have implemented
our method in the symbolic execution engine KLEE [1] and conducted
experiments on a large set of programs from the GNU Coreutils suite.
Our results confirm that redundancy due to common path suffix is both
abundant and widespread in real-world applications.

1 INTRODUCTION

Dynamic symbolic execution based test input generation
has emerged as a popular technique for testing real-
world applications written in full-fledged programming
languages such as C/C++ and Java [2], [3], [4], [5], [6],
[1]. The method performs concrete analysis as well as
symbolic analysis of the program simultaneously, often
in an execution environment that accurately models the
system calls and external libraries. The symbolic analysis
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is conducted by analyzing each execution path precisely,
i.e., encoding the path condition as a quantifier-free first-
order logic formula and then deciding the formula with
a SAT or SMT solver. When a path condition is satis-
fiable, the solver returns a test input that can steer the
program execution along this path. Due to its capability
of handling real applications in their native execution
environments, dynamic symbolic execution has been
quite successful in practical settings—for a survey of the
recent tools, see Pasareanu et al. [7].

However, a major hurdle that prevents symbolic ex-
ecution from getting even wider application is path
explosion. That is, the number of paths of a program
can be exponential in the number of branch conditions
encountered during the execution. Even for a medium-
size program and a small bound for the execution depth,
exhaustively covering all possible paths can be extremely
expensive. Consider the program in Figure 1, which
has three input variables a, b, c and three consecutive
if-else statements. Dynamic symbolic execution is
able to compute a set of test inputs, each of which has
concrete values for all input variables, to exhaustively
cover the valid execution paths of the program. There are
23 = 8 distinct execution paths for this program. Classic
symbolic execution tools(such as KLEE [1]) would gener-
ate eight test inputs. The covered paths of this example,
numbered from 1 to 8, are shown in Figure 1 (right). For
instance, P1 is a path that passes through the if-branch
at Line 1, the if-branch at Line 3, and the if-branch at
Line 5.

Many efforts have been made to mitigate the path
explosion problem. One of them, which has been quite
effective in practice, is called preconditioned symbolic
execution [8]. It achieves path reduction by taking a
predefined constraint Πprec as an additional parameter in
addition to the program under test. Preconditioned sym-
bolic execution only descends into program branches
that satisfy Πprec, with the net effect of pruning away the
subsequent steps of unsatisfied branches. By leveraging
the constraint, preconditioned symbolic execution effec-
tively reduces the search space. That is, the reduction
is achieved by sacrificing the completeness of symbolic
execution. For example, by setting Πprec to be false
preconditioned symbolic execution terminates without
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1: if (a<=0) a = a+10;
2: else a = a-10;

...
3: if (a<=b) res = a-b;
4: else res = a+b;

...
5: if (res>c) res = 1;
6: else res = 0;

...

P1 P2 P3 P4 P5 P6 P7 P8
-----------------------
1 1 1 1 2 2 2 2
| | | | | | | |
3 3 4 4 3 3 4 4
| | | | | | | |
5 6 5 6 5 6 5 6
| | | | | | | |
-----------------------

Fig. 1: A program with three branches and eight paths.

exploring any path.
In this paper, with the assumption that all potential

failures are modeled as conditional abort statements, we
propose a new method called postconditioned symbolic
execution that eliminates redundant paths without reduc-
ing the search space. The new approach mitigates path
explosion by identifying and then eliminating redundant
path suffixes encountered during symbolic execution.
Our method is based on the observation that many path
suffixes are shared among different test runs, and repeat-
edly exploring these path suffixes is a main reason for
path explosion. Consider Figure 1 again. Although the
eight paths in Figure 1 are different, they share common
path suffixes. For instance, the suffix . . . → 3 → 5 is
shared by paths No. 1 and No. 5; and the suffix . . .→ 6 is
shared by paths No. 2, No. 4, No. 6, and No. 8. Of course,
sharing a suffix does not necessary mean the suffix needs
not be explored again. Otherwise path exploration is
erroneously reduced to branch coverage. On the other
hand, since the goal of testing is to uncover bugs, once
a path suffix will not reveal any new program behavior,
we should not explore it again in the future.

In order to avoid unnecessary exploration, postcondi-
tioned symbolic execution associates each program loca-
tion l with a postcondition that summarizes the explored
path suffixes starting from l. During the iterative test
generation process, new path suffixes are characterized
and added incrementally to a postcondition, represented
as a quantifier-free first-order logic constraint. In the
subsequent computation of new test inputs, our method
checks whether the current path condition is subsumed
by the postcondition. If the answer is yes, the execution
of the rest of the path is skipped.

There are major differences between preconditioned
and postconditioned symbolic executions. The constraint
of the former approach is predefined, while the con-
straints of the latter are dynamically computed. The goal
of preconditioned symbolic execution is to avoid the
paths that do not satisfy the predefined constraint, and
thus there is no guarantee of exhaustive path coverage.
In fact, if the predefined constraint is false, no path will
be explored. It highlights the fact that the predefined
constraint has to be carefully chosen, or else it will
not be effective. In contrast, postconditioned symbolic

execution has a path coverage that is equivalent to
standard symbolic execution, because the dynamically
computed postconditions eliminate redundant paths only.

We have implemented a software tool based on the
KLEE symbolic virtual machine [1] and evaluated it
using a large set of C programs from the GNU Coreutils
suite, which implements some of the most frequently
used Unix/Linux commands. These benchmarks can be
considered as representatives of the systems code in
Unix/Linux. They are challenging for symbolic execu-
tion due to the extensive use of error checking code,
loops, pointers, and heap allocated data structures. N-
evertheless, our experiments show that postconditioned
symbolic execution can have a significant speedup over
state-of-the-art methods in KLEE on these benchmarks.

To sum up, our main contributions are listed as fol-
lows:

• We propose a new symbolic execution method for
identifying and eliminating redundant path suffixes
to mitigate the path explosion problem.

• Postconditioned symbolic execution is computa-
tional expensive. We propose several optimization
heuristics to reduce its cost.

• We implement a prototype software tool based on
KLEE [1] and experimentally compare our new
method with the state-of-the-art techniques.

• We confirm, through our experimental analysis
of real-world applications, that redundancy due
to common path suffixes is both abundant and
widespread, and our new method is effective in
reducing the number of explored paths as well as
the execution time.

The remainder of this paper is organized as follows.
We first establish notations and review related tech-
niques in Section 2. Then, we present our postcondi-
tioned symbolic execution method in Section 3 and its
several optimizations in Section 4, followed by experi-
mental results in Section 5. We review related work in
Section 6, and finally give our conclusions in Section 7.

2 REVIEW OF TEST GENERATION USING
SYMBOLIC EXECUTION

We first present background definitions related to the
syntax and semantics for a program. We consider that
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a program P has a set V ar of program variables and
a set Instr of instructions with the following syntactic
categories:

ea ∈ AExp arithmetic expressions
eb ∈ BExp boolean expressions

instr ∈ Instr instructions

We assume some countable set of variables is given;
constants will not be further defined and neither will be
the operators.

a, b, c ∈ V ar variables
n ∈ Con constants
opa ∈ Opa arithmetic, pointer etc. operators
opb ∈ Opb boolean operators
opr ∈ Opr relational operators

The syntax of a program P is given by the following
abstract syntax:

ea ::= a | n | ea1 opa ea2
eb ::= true | false | not eb | eb1 opb eb2

| ea1 opr ea2
instr ::= a := ea | skip | halt | abort | instr1 ; instr2

| if eb then instr1 else instr2
| while eb do instr

Given a program P , let Vin ⊆ V ar be the subset of
input variables, which are marked in the program as
symbolic, e.g., using char x:= symbolic(). The goal
of test generation is to compute concrete values for these
input variables such that the new test inputs, collectively,
can cover all possible execution paths of the program.

We assume an active testing frameworks [9], where
all detectable failures are modeled using a special
abort instruction. The reachability of the abort s-
tatements indicates the occurrence of a runtime fail-
ure. For example, instruction assert(c) can be
modeled as if(!c)abort;else skip, instruction
x=y/z can be modeled as if(z==0)abort;else
x=y/z, and instruction t->k=5 can be modeled as
if(t==0)abort;else t->k=5. Consider that abort
may appear anywhere in a path, in general, detecting
the failures requires the effective coverage of all valid
execution paths. An instruction instr may have one of
the following types:

• skip, representing a dummy statement. It will often
be used for omitting the else branches.

• halt, representing the normal program termination;
• abort, representing the faulty program termination;
• assignment v := exp, where v ∈ V ar and exp is an

expression over the set V ar of program variables ;
• branch if(c), where c is a conditional expression

over V ar and if(c) represents the branch taken
by the execution. The else-branch is represented by
else, which equals to if(¬c).

With proper code transformations, the above instruction
types are sufficient to represent the execution path of
arbitrary C code. For example, if ptr points to &a,

*p:=5 can be modeled as if(p==&a) a:=5. And if q
points to &b, q->x :=10 can be modeled as if(q==&b)
b.x:=10. For a complete treatment of all instruction
types, please refer to the original dynamic symbolic
execution papers on DART [2], CUTE [4], or KLEE [1].

Definition 1. Concrete memory state. Let V al be the
value space. A concrete memory state is a mapping memc :
V ar → V al. For each program variable v ∈ V ar, its concrete
value is represented by the expression memc[v].

Definition 2. Concrete execution event. For a concrete
memory state memc, let instr ∈ Instr be an instruction in
the program. An execution instance of instr is called an event,
denoted as ev = ⟨l, instr, l′⟩, where l and l′ are the control
locations before and after executing the instruction.

For a branch instruction if(c), if c is evaluated to
true under memc, then the branch will be taken by the
execution. Otherwise, the else-branch, represented by
if(¬c), will be executed. A control location l is a place
in the execution path, not the location of the instruction
(e.g., line number) in the program code. For example, if
instr is executed multiple times in the same execution
path, e.g., when instr is inside a loop or a recursive
function, each instance of instr would give rise to a
separate event, with unique control locations l and l′.
Conceptually, this corresponds to unwinding the loop
or recursive calls.

Definition 3. Concrete execution. A concrete execution of
a deterministic sequential program is a sequence of execution
events π = l0

e1−→ l1
e2−→ l2 . . .

en−→ ln.

Definition 4. Test input. For a program P , let Vin ⊆ V ar be
the subset of input variables. A test input of P is a mapping
t : Vin → V al.

Definition 5. Instruction reachable. For a deterministic
sequential program P , the concrete execution of P is fully
determined by test inputs. Let t be a test input of P and
π = l0

e1−→ l1
e2−→ l2 . . .

en−→ ln be the concrete execution
determined by t. If instruction s is in ei, (0 < i ≤ n), we say
that s is reachable under test input t.

Specifically, if an abort is reachable under t, we say t
triggers an error. Moreover, for the concrete execution π,
a suffix of π is a subsequence πi = li

ei−→ li+1 . . .
en−→ ln,

where 0 ≤ i ≤ n. we also say πi is reachable under t. Let
T be a test input set of a program, we can easily extend
the reachability of an instruction (or a suffix) under T .
Given a test input t ∈ T , if an instruction s (or suffix πi)
is reachable under in t then we say that s (or suffix πi)
is reachable under T .

If we denote the concrete execution by the pair (τ, π),
the corresponding symbolic execution is denoted (∗, π),
where ∗ means that the test input is arbitrary. In a
dynamic symbolic execution (also called concolic) frame-
work [2], [1], [4], a symbolic execution will be calculated
along with a concrete execution on-the-fly. The symbolic
semantics for a concrete execution is defined as follows.

Definition 6. Symbolic execution. A symbolic execution
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of a deterministic sequential program is sequence of instruc-
tions πs = l0

instr1−→ l1
instr2−→ l2 . . .

instrn−→ ln.

Definition 7. Symbolic memory state. Let πs = l0
instr1−→

l1
instr2−→ l2 . . .

instrn−→ ln be a symbolic execution, there
is symbolic memory state on each location. A symbolic
memory state is a mapping mems : V ar → AExp. For each
program variable v ∈ V ar, its symbolic value is represented by
the expression mems[v]. Let l instr−→ l′ be an event in execution
πs, mems be symbolic memory state before the event and
mem′

s be the following symbolic state. If instr is v := exp,
then mem′

s = mem[v ← exp], otherwise mem′
s = mems.

Definition 8. Path condition. Let πs = l0
instr1−→ l1

instr2−→
l2 . . .

instrn−→ ln be a symbolic execution, there is a path
condition on each location. A path condition is boolean
expression, denoted as pcon. Let l

instr−→ l′ be an event in
the execution πs, pcon be path condition before the event
and pcon′ be the following one. If the instr is if(c), then
pcon′ = pcon ∧ c, otherwise pcon′ = pcon.

The set of all possible symbolic executions of a pro-
gram can be captured by a directed acyclic graph (DAG),
where the nodes are control locations and the edges are
instructions that move the program from one control
location l to another control location l′. The root node
is the initial program state, and each terminal node
represents the end of an execution. A non-terminal node
l may have one outgoing edge, which is of the form
l

v:=exp−→ l′, or two outgoing edges, each of which is of

the form l
if(c)−→ l′. The goal of symbolic execution is to

compute a set T of test inputs such that, collectively,
they cover all valid paths in the DAG.

Algorithm 1 shows the pseudocode of the classic
symbolic execution procedure, e.g., the one implemented
in KLEE. Given a program P and an initial state, the
procedure keeps discovering new program paths and
generating new test inputs, with the goal of covering
these paths. That is, if π is a valid path of the program
P under some test input, it should be able to generate
test input τ ∈ T that replays this path.

In this algorithm, a program state is represented by
a tuple ⟨pcon, l,mem⟩, where pcon is the path condition
along an execution and l is a control location and mem
is the symbolic memory map. Note that, for simpli-
fication, in the following sections we also use mem
to denote symbolic memory states. The initial state is
⟨true, linit,meminit⟩, meaning that the path condition
pcon is true and linit is the beginning of the program.
We use stack to store the set of states that need to be
processed by the symbolic execution procedure. Initially,
stack contains the initial state only. Within the while-
loop, for each state ⟨pcon, l,mem⟩ in the stack, we first
find the successor state, when instr is an assignment,
or the set of successor states, when the instructions are
branches. For each successor state, we compute the new
path condition pcon′ and the control location l′.

There are four types of events that can move the

Algorithm 1 StandardSymbolicExecution( )

1: init state ← ⟨true, linit,meminit⟩;
2: stack.push( init state );
3: while ( stack is not empty )
4: ⟨pcon, l,mem⟩ ← stack.pop();
5: if ( pcon is satisfiable under mem )
6: for each ( event l instr−→ l′)
7: if ( instr is abort )
8: τ ← solve (pcon,mem); //bug found
9: T := T ∪ {τ};

10: else if ( instr is halt )
11: τ ← solve (pcon,mem);
12: T := T ∪ {τ};
13: else if ( instr is if(c) )
14: next state ← ⟨pcon ∧ c, l′,mem⟩;
15: stack.push( next state );
16: else if ( instr is v := exp )
17: next state ← ⟨pcon, l′,mem[v ← exp]⟩;
18: stack.push( next state );
19: end if
20: end for
21: end if
22: end while
23: return T ;

program from location l to location l′.

• If the event is l
abort−→ l′, the symbolic execution

procedure finds a bug and terminates.
• If the event is l

halt−→ l′, the symbolic execution path
reaches the end.

• If the event is l
v:=exp−→ l′, the new memory map mem′

is computed by assigning exp to v in mem, denoted
mem[v ← exp].

• If the event is l
if(c)−→ l′, the new path condition pcon′

is computed by conjoining pcon with c, denoted
pcon ∧ c.

Since we use a stack to hold the set of to-be-processed
states, Algorithm 1 implements a depth-first search (DF-
S) strategy. That is, the procedure symbolically executes
the first full path toward its end before executing the
next paths. On a uniprocessor machine, the set of paths
of a program would be executed sequentially, one after
another. In addition to DFS, other frequently used search
strategies include breadth-first search (BFS) and random
search. These alternative strategies can be implemented
by replacing the stack with a queue or some random-
access data structures.

Although the classic symbolic execution procedure in
Algorithm 1 can systematically generate test inputs that
collectively cover the entire space of paths up to a certain
depth, the number of paths (and hence test inputs) is
often extremely large even for medium-size programs.
Our observation is that, in practice, many program paths
share common path suffixes (termed ”diamond-shaped”
paths). Since the goal of software testing is to uncover
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bugs, once a path suffix is tested, there is no need to
generate new test inputs to cover the path suffix again
in the future.

In the remainder of this paper, we shall present post-
conditioned symbolic execution that is able to identify
and then eliminate such redundant path suffixes. In
the best case scenario, removing such redundant paths
can lead to an exponential reduction in the number of
explored paths.

3 POSTCONDITIONED SYMBOLIC EXECUTION

3.1 A Motivating Example
Postconditioned Symbolic Execution (PSE) attempts to
prune paths by eliminating redundant path suffixes en-
countered during symbolic execution. During the explo-
ration, PSE maintains the same concrete and symbolic
states as the standard symbolic execution does. More-
over, at each branch location l, a postcondition Πpost[l]
summarizes the path suffixes that have been explored
from this location. Given a new path that reaches l with
path condition ϕ, there is no need to continue beyond l if
the ϕ is subsumed by Πpost[l]. The subsumption indicates
that no program states reached after l along π can
cause abort. In order to obtain postconditions, we exploit
weakest precondition computation. The postcondition
at each branch location is updated after a new path
exploration.

In this section, we illustrate the main idea behind
PSE using an example. Using the information shown in
Table 1, we first show how standard symbolic execution
works. Then, we show how postconditioned symbolic
execution works on the same example.

Columns 1-4 illustrate the process of running standard
symbolic execution on the program in Figure 1. Column
1 shows the index of the path (numbered from 1 to 8).
Column 2 shows the sequence of branches taken by the
path. Column 3 shows the path condition accumulated
by symbolic execution at each branch. Column 4 shows
at which step the constraint solver is invoked to check
the satisfiability (SAT) of the path condition, to compute
the test input.

Columns 5-7, in contrast, illustrate our new method.
Column 7 shows the summary of explored path suffixes,
which is computed for each if-else statement, after the
execution of this path terminates. In contrast to the
original path condition ϕ shown in Column 3, the new
path condition ϕ′ in Column 5 is the conjunction of ϕ
with the negated postcondition ¬Πpost[l] at location l,
where Πpost[l] summarizes all the explored path suffixes
from location l and thus ϕ∧¬Πpost[l] represents that the
following path exploration will avoid the explored path
suffixes. It is worth pointing out that the postcondition
Πpost[l] is computed at the end of the previous symbolic
execution path.

For path No. 1, since the summary does not yet exist
when we compute the path condition ϕ′, we assume that
Πpost[l] = false for every location l. Therefore, the new

path conditions at Lines 1, 3 and 5 remain the same; they
are (a ≤ 0), (a ≤ 0)∧ (a+10 ≤ b) and (a ≤ 0)∧ (a+10 ≤
b) ∧ (a + 10 − b > c), respectively. A test input such as
a = −10, b = 1, c = −6 can be computed by solving the
path condition (a ≤ 0)∧ (a+10 ≤ b)∧ (a+10− b > c) at
Line 5.

At the end of Path No. 1, we summarize its path suf-
fix by performing a weakest precondition computation.
Here, we informally explain how the postconditions in
Column 7 are obtained. At the end of executing path
No. 1, we scan the path in reverse order to find the
last branch instruction, which is the one at Line 5. Since
the branch has been covered, we record the summary
constraint (res > c). Similarly, for the branch at Line 3,
we record the summary constraint (a ≤ b) ∧ (a− b > c),
which corresponds to the path suffix that passes through
Line 3 and Line 5. For the branch at Line 1, we record the
summary constraint (a ≤ 0)∧(a+10 ≤ b)∧(a+10−b > c),
which corresponds to the path suffix that passes through
Lines 1, 3, and 5.

Path No. 2 starts from the else-branch at Line 6. The
original path condition is ϕ = (a ≤ 0) ∧ (a + 10 ≤ b) ∧
(a+ 10− b ≤ c) at Line 5. In our new method, the path
constraint should be ϕ′ = ϕ ∧ ¬(a + 10 − b > c), where
a+10− b > c is the current state of summary res > c of
the already explored path suffix. Since ϕ′ ≡ ϕ, we do not
gain anything by applying this reduction. A test input
such as a = −10, b = 2, c = 4 can be computed by solving
the path condition at Line 5.

At the end of path No. 2, we know that the branch
characterized by (res > c) has been explored. Fur-
thermore, the branch characterized by (res ≤ c) has
been explored. Therefore, the combined postcondition
at Line 5 becomes (res > c) ∨ (res ≤ c) ≡ true. We
continue the computation backward to Line 3, where
the postcondition is (a ≤ b) ∧ (a − b) ≤ c. Combining
it with the previously computed postcondition, we have
((a ≤ b)∧(a−b) > c)∨((a ≤ b)∧(a−b) ≤ c), which is the
same as (a ≤ b) at Line 3. Similarly, the postcondition at
Line 1 is updated to (a ≤ 0) ∧ (a+ 10 ≤ b).

Path No. 3 starts from the else-branch at Line 4
and then reaches Line 5. Since we are interested in
exploring path suffixes not yet covered at Line 5, we
check whether ϕ′ = ϕ ∧ ¬true is satisfiable. Here ¬true
is the negation of the postcondition computed at the
end of path No. 2. Since ϕ′ is unsatisfiable, the symbolic
execution terminates before executing Line 5. In this case,
the test input computed by the solver by solving the
path condition at Line 4 can be a = −6, b = −10, c = ∗,
meaning it is immaterial whether Line 5 or Line 6 is
executed.

At the end of path No. 3, we compute the summary
constraint (a ≤ b) ∨ (a > b), which is the same as true at
Line 3. We compute the summary constraint (a ≤ 0) ∧
(a + 10 ≤ b) ∨ (a ≤ 0) ∧ (a + 10 > b), which is the same
as (a ≤ 0) at Line 1.

In our method, path No. 4 will be skipped. In tradi-
tional symbolic execution, when executing line 5, path
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TABLE 1: Symbolic computation for the program in Figure 1
Path Br No. Path condition ϕ (original) TestGen Path condition ϕ′ (with pruning) TestGen Postconditions

1 (a ≤ 0) (a ≤ 0) (a ≤ 0) ∧ (a+ 10 ≤ b) ∧ (a+ 10− b > c)
1 3 (a ≤ 0) ∧ (a+ 10 ≤ b) (a ≤ 0) ∧ (a+ 10 ≤ b) (a ≤ b) ∧ (a− b > c)

5 (a ≤ 0) ∧ (a+ 10 ≤ b) ∧ (a+ 10− b > c) SAT (a ≤ 0) ∧ (a+ 10 ≤ b) ∧ (a+ 10− b > c) SAT (res > c)
1 (a ≤ 0) (a ≤ 0) (a ≤ 0) ∧ (a+ 10 ≤ b)

2 3 (a ≤ 0) ∧ (a+ 10 ≤ b) (a ≤ 0) ∧ (a+ 10 ≤ b) (a ≤ b)
6 (a ≤ 0) ∧ (a+ 10 ≤ b) ∧ (a+ 10− b ≤ c) SAT (a ≤ 0) ∧ (a+ 10 ≤ b) ∧ (a+ 10− b ≤ c) ∧ ¬(a+ 10− b > c) SAT true
1 (a ≤ 0) (a ≤ 0) (a ≤ 0)

3 4 (a ≤ 0) ∧ (a+ 10 > b) (a ≤ 0) ∧ (a+ 10 > b) SAT true
5 (a ≤ 0) ∧ (a+ 10 > b) ∧ (a+ 10 + b > c) SAT (a ≤ 0) ∧ (a+ 10 > b) ∧ (a+ 10 + b > c) ∧ ¬true true
1 (a ≤ 0) (skipped)

4 4 (a ≤ 0) ∧ (a+ 10 > b)
6 (a ≤ 0) ∧ (a+ 10 > b) ∧ (a+ 10 + b ≤ c) SAT
2 (a > 0) (a > 0) SAT true

5 3 (a > 0) ∧ (a− 10 ≤ b) (a > 0) ∧ (a− 10 ≤ b) ∧ ¬true true
5 (a > 0) ∧ (a− 10 ≤ b) ∧ (a− 10− b > c) SAT true
2 (a > 0) (skipped)

6 3 (a > 0) ∧ (a− 10 ≤ b)
6 (a > 0) ∧ (a− 10 ≤ b) ∧ (a− 10− b ≤ c) SAT
2 (a > 0) (skipped)

7 4 (a > 0) ∧ (a− 10 > b)
5 (a > 0) ∧ (a− 10 > b) ∧ (a− 10 + b > c) SAT
2 (a > 0) (skipped)

8 4 (a > 0) ∧ (a− 10 > b)
6 (a > 0) ∧ (a− 10 > b) ∧ (a− 10 + b ≤ c) SAT

No. 4 is generated through forking a new path from
path No. 3 along the false-branch of the branch at line
5. However, path No. 3 terminates before executing line
5 in PSE, thus path 4 will be totally skipped in PSE.

Path No. 5 starts from the else-branch at Line 2
under the constraint (a > 0). Once it reaches Line 3,
our pruning algorithm shows that ϕ′ = ϕ ∧ ¬true is
unsatisfiable, and therefore symbolic execution will not
go beyond Line 3. In this case, the test input computed
at Line 2 can be a = 1, b = ∗, c = ∗, where ∗ means that is
immaterial which of the four path suffixes will be executed.

At the end of path No. 5, we compute the summary
constraints. At this time, all postconditions become true,
indicating that no future symbolic execution is needed.
Therefore, paths No. 6-8 are skipped.

For ease of comprehension, the program used in this
example is over-simplified and there are only simple
data and control dependencies between the branch s-
tatements and the assignment statements. In nontrivial
programs, the computation of postconditions is more
complicated and the conditional expressions can be
transformed due to data dependency. In the rest of this
section, we present algorithms that handle the general
programs.

3.2 Overall Algorithm

The pseudocode of our postconditioned symbolic execu-
tion is shown in Algorithm 2. The overall flow remains
the same as in Algorithm 1. However, there are several
notable additions.

We maintain a global key-value table called Πpost[ ] at
Line 2, which maps a control location l in the execution
path to the summary Πpost[l] of all explored path suffixes
originated from the location l. Such summary table
enables early termination that leads to pruning of partial
or whole paths. In addition to the cases where instr is an
abort at Line 10 or halt at Line 14, we also terminate the
forward symbolic execution when (pcon ∧ c) → Πpost[l

′]
holds under the current memory map at Line 19. In this
case, the path condition (pcon ∧ c) is fully subsumed

by the summary Πpost[l
′] of all explored path suffixes

originated from the next control location l′. We can
terminate early and compute the new test input at this
point, because from this point on, all path suffixes have
already been tested.

The summary table is created and then updated by
the procedure call UpdatePostcondition() at Lines 13,
17 and 22. When an instruction abort occurs, we invoke
UpdatePostcondition(⊥, true, stack.e) at Line 13 so a
weakest precondition computation can start from termi-
nal node ⊥ with the initial logic formula true. At the end
of each execution path, when the current instr is halt,
a similar computation is invoked at Line 17. The third
procedure call happens at Line 22 when the current path
condition is subsumed by the summary at l′. In this case
we invoke UpdatePostcondition(l′,Πpost[l

′], stack.e) so a
weakest precondition computation can start from l′ with
the initial logic formula being its current summary. This
new procedure, to be discussed in Section 3.3, updates
the summaries for all control locations along the current
path.

3.3 Summarizing Path Suffixes

We construct the summaries for the visited control lo-
cations incrementally. Initially Πpost[l] = false for ev-
ery control location l. Whenever a new test input is
generated for the path π, we update Πpost[l] for all
control locations in π based on the weakest precondition
computation along π in the reverse order. The weakest
precondition, defined below, is a logical constraint that
characterizes the suffix starting from a location l of the
current execution path. If l is a terminal location ⊥,
initially wp[⊥] = true. If l is an internal location with an
existing summary ϕ, initially wp[l] = ϕ. The propagation
of weakest precondition at l along l

instr−→ l′ is based on
the type of instr as following:

• For a location l with the outgoing edge l
v:=exp−→ l′,

wp[l] is the logic formula computed by substituting
v with exp in wp[l′]. That is, wp[l] = wp[l′][exp/v].
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Algorithm 2 PostconditionedSymbolicExecution( )

1: Let stack be the exploration state stack; a state is
triple ⟨pc, l,mem⟩; stack.e denotes the executed event
stack, i.e. a projection of all the second elements in
stack.

2: Let Πpost[l] be postedcondition of each statement ;
3: for each l, Πpost[l]← false;
4: init state ← ⟨true, linit,meminit⟩;
5: stack.push( init state );
6: while ( stack is not empty )
7: ⟨pcon, l,mem⟩ ← stack.pop();
8: if ( pcon is satisfiable under mem )
9: for each( event l instr−→ l′ at location l )

10: if ( instr is abort )
11: τ ← Solve ( pcon,mem ); //bug found
12: T := T ∪ {τ};
13: UpdatePostcondition(⊥, true, stack.e);
14: else if ( instr is halt)
15: τ ← Solve ( pcon,mem );
16: T := T ∪ {τ};
17: UpdatePostcondition(⊥, true, stack.e);
18: else if (instr is if(c) )
19: if (pcon ∧ c→ Πpost[l

′])
20: τ ← Solve ( pcon,mem );
21: T := T ∪ {τ};
22: UpdatePostcondition(l′, Πpost[l

′],
stack.e);

23: else
24: next state ← ⟨pcon ∧ c, l′,mem⟩;
25: stack.push( next state );
26: end if
27: else if ( instr is v := exp )
28: next state ← ⟨pcon, l′,mem[v ← exp]⟩;
29: stack.push( next state );
30: end if
31: end for
32: end if
33: end while
34: return T ;

• For a location l with the outgoing edge l
if(c)−→ l′,

wp[l] = wp[l′] ∧ c.

The pseudocode for updating Πpost[ ] is shown as
the procedure UpdatePostcondition() in Algorithm 3.
Since Πpost[l] is defined as the summation of multiple
paths, we accumulate the effect of newly computed
weakest precondition at control location l by Πpost[l] =
Πpost[l] ∨ wp[l]. Note that updates happen only when l
is the sink of a branch statement as these are the only
control locations where pruning is possible.

Example 1. Consider the motivating example introduced in
Section 3.1. At the end of executing path No. 1, we invoke
UpdatePostcondition(), which carries out the summary
computation as follows:

loc instr weakest precondition rule
applied

l0
if(a≤0)−→ (a ≤ 0) ∧ (a+ 10 ≤ b)

∧(a+ 10− b > c) wp[l1] ∧ c

l1
a:=a+10−→ (a+ 10 ≤ b)

∧(a+ 10− b > c) wp[l2][exp/v]

l2
if(a≤b)−→ (a ≤ b) ∧ (a− b > c) wp[l3] ∧ c

l3
res:=a−b−→ (a− b > c) wp[l4][exp/v]

l4
if(rec>c)−→ (res > c) wp[l5] ∧ c

l5
res:=1−→ true wp[l6][exp/v]

l6 true terminal

Algorithm 3 UpdatePostcondition(l′, ϕ, path)

1: Let path = ⟨e1, e2, ..., en⟩ be the sequence of
executed events;

2: wp[l′]← ϕ;
3: while ( event = path.pop() exists )
4: Let l instr−→ l′ be the event;
5: if ( instr is v := exp )
6: wp[l]← wp[l′][exp/v];
7: else if ( instr is if(c) )
8: wp[l]← wp[l′] ∧ c;
9: Πpost[l]← Πpost[l

′] ∨ wp[l];
10: end if
11: end while

3.4 Pruning Redundant Path Suffixes

We compute the summary of previously explored path
suffixes in Algorithm 2, with the goal of using it to
prune redundant paths. The application of summary
is enabled at Line 19, where the path condition pcon
of current execution π has been computed. Here, pcon
denotes the set of program states that can be reached
from some initial states via π. In particular, when state

S = ⟨pcond, l,mem⟩ is reached and there exists l
if(c)−→ l′,

Algorithm 2 revises Algorithm 1 to enable path suffix
elimination as follows:

• If pcon ∧ c → Πpost[l
′], no new path suffix can be

reached by extending this execution; in such case,
we force symbolic execution to backtrack from l
immediately, thereby skipping the potentially large
set of redundant test inputs that would have been
generated for all these path suffixes.

• If pcon ∧ c ̸→ Πpost[l
′], there may be some path

suffixes that can be reached by extending the current
path from location l. In this case, we continue the
execution as in the standard symbolic execution
procedure.

During the actual implementation, the validity of
pcon ∧ c → Πpost[l

′] can be decided using a constraint
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solver to check the satisfiability of its negation (pcon ∧
c ∧ ¬Πpost[l

′]).

Example 2. Consider the motivating example introduced in
Section 3.1. When executing path No. 3 in Table 1 symbol-
ically up to Line 4, we have path condition pcon = (a ≤
0)∧ (a+10 > b). The next instruction is if(res > c). At the
next control location l′, the summary of explored path suffixes
is Πpost[l

′] = true. To check whether (a ≤ 0) ∧ (a + 10 >
b)∧ (a+10+ b > c)→ true holds, we check the satisfiability
of its negation: (a ≤ 0)∧(a+10 > b)∧(a+10+b > c)∧¬true.
Obviously it is unsatisfiable as the formula is equivalent to
false.

While running Algorithm 2, we would go inside the if-
branch at Line 19. By invoking the constraint solver on
pcon = (a ≤ 0) ∧ (a + 10 > b), we can compute a test
input such as a = −6, b = −10, c = ∗, where ∗ means the
value of c does not matter.

After that, and before backtracking, we also invoke Up-
datePostcondition() to summarize the partial execution path
to include it into the summary table, as if we have reached the
end of path No. 3.

Note that before checking the satisfiability of (pcon∧c∧
¬Πpost[l

′]), we have to update the variables in Πpost[l
′]

with their values as stored in memory mem. That is,
Πpost[l

′] ← ∀x∈V (Πpost[l
′])[x/eval(x, S)], where V is the

variable set of Πpost[l
′].

Example 3. Consider the following code snippet. Suppose

0 x = SYMX, y = SYMY;
1 if (x > 0)

//l1: sum1: y>=0 && x<=-5 && x<=0
2 y = -1;
3 else if (x > -5)

//l2: sum2: y>=0 && x<=-5
4 y = 0;
else

5 y = 1;
6 if (y >= 0)

//l3: sum3: y>=0
7 return 1;
else

8 return 0;

Fig. 2: Code snippet for explanation of subsumption
check

the path executed first is ⟨1, 3, 5, 6, 7⟩. After its execution the
summary at l3 becomes y ≥ 0. When the second execution
reaches at l3 with path prefix ⟨1, 3, 4⟩, the current value of y
is 0. Therefore Π′

post[l3] becomes 0 ≥ 0 and the we can stop
the execution of the current path.

3.5 Soundness

In the context of active testing frameworks, postcon-
ditioned symbolic execution achieves the same path
coverage with standard symbolic execution, because the

dynamically computed postconditions eliminate redun-
dant paths only. In this section, we present a theorem
that formally proves the claim.

Theorem 1. For a program P , let T and T ′ be the test input
sets generated by Algorithm 1 and Algorithm 2, respectively.
For any suffix that is reachable within the specified depth
bound under T , the suffix will also be reachable under T ′.

Proof: We argue the correctness by contradiction.
That is, there exists a suffix that is (1) reachable under T ,
(2) but unreachable under T ′. Let s = li

ei−→ . . .
en−1−→ ln

be a suffix of π = l0
e0−→ . . . li−1

ei−1−→ li . . .
en−1−→ ln

(0 ≤ i ≤ n) by running a test input in t ∈ T . We assume
the opposite that s is not covered by any test input in T ′.
Assume smax is the longest subsequence from s that can
be constructed by running any test input t′ ∈ T ′. Then,
smax will be either as a form li

ei−→ . . .
ej−1−→ lj (i ≤ j < n)

or empty sequence. We first discuss when smax is not a
empty sequence. There are three cases to consider:

Case I. ej is abort or halt. From (1), π is feasible path
and there is an execution instance such that lj

ej−→ lj+1.
However, when ej is abort or halt, there is no feasible
execution following lj .

Case II. ej is a v := exp. According to Lines from 27
to 29 in Algorithm 2, π = li

ei−→ . . .
ei−→ li+1 is also

reachable under t′. This contradicts the assumption that
smax is the longest reachable subsequence from s under
T ′.

Case III. ej is a if(c). Lines from 18 to 26 in Algo-
rithm 2 indicate that there are two scenarios under this
case:

• The first scenario is that lj
ej−→ lj+1 and pcon ∧ c→

Πpost[j+1]. According to (2), t′ ∈ T ′ is the test input,
under which li

ei−→ . . .
ej−1−→ lj is reachable. Moreover,

According to Algorithm 3 that processes executed
events stack.e from Algorithm 2, Πpost[j + 1] is a
summation of weakest preconditions for multiple
paths from j+1. From pcon∧c→ Πpost[j+1], suffix
li

ei−→ . . .
ej−1−→ lj

ej−→ lj+1 is also reachable under t′,
which contradicts the assumption that smax is the
longest subsequence from s that is reachable under
T ′.

• The second scenario is that lj
ej−→ lj+1 and pcon∧c ̸→

Πpost[j + 1]. According to (1), pcon ∧ c is satisfiable
under mem, and pcon ∧ c ̸→ Πpost[j + 1]. Thus
there is a divergent path from lj+1 that has not
been explored before. Lines 24 to 25 in Algorithm 2
pushes ⟨pcon ∧ c, l + 1,mem⟩ into stack. It explores
the sub-space under l + 1 and generate other test
inputs into T ′. Therefore li

ei−→ . . .
ej−1−→ lj

ej−→ lj+1

is reachable under T ′, contradicting the assumption
that smax is the longest subsequence from s that is
reachable under T ′.

If smax is empty sequence, by considering ei−1, similar
contradictions can be deduced.

Corollary 1. For abort statement s in a program P , let T
and T ′ be the test input sets generated by Algorithm 1 and
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Algorithm 2, respectively. If s is reachable under T , it will be
reachable under T ′ as well.

3.6 The Impact of Search Strategies
In Algorithm 2, the states waiting to be processed by
the symbolic execution procedure are stored in a stack,
which leads to a Depth-First Search (DFS) of the directed
acyclic graph that represents all possible execution paths.
At any moment during the symbolic execution, the table
Πpost[ ] has the up-to-date information about which
path suffixes have been explored. This is when our
postconditioned symbolic execution method performs at
its best.

In contrast, if Algorithm 2 is implemented by replacing
the state stack with a queue, it would lead to a Breadth-
First Search (BFS) strategy. This is when our path suffix
elimination method performs at its worst. To see why
using the BFS strategy makes it impossible to pruning
redundant paths, consider the running example intro-
duced in Section 3.1.

With BFS, the symbolic execution procedure would
have symbolically propagated the path condition along
all eight paths, before solving the first one to compute
the test input. During the process, the table Πpost[ ]
is empty because there does not yet exist any explored
path. By the time we compute the test inputs for path
No. 1 and No. 2, and update the table Πpost[ ], it would
have been too late. In particular, we would have already
constructed the path conditions for all the other six
paths.

4 OPTIMIZATION

When the execution paths are long and many, the size
of the table Πpost[ ] as well as the size of each logic
constraint Πpost[l] may be large. The summary Πpost[l],
in particular, needs to be stored in a persistent media,
meaning that the keys of the table are the global control
locations, and the values are the logic formulas repre-
senting Πpost[l] at global control location l. In general,
these logical formulas can become complex.

Therefore, in practice, we use various heuristic approx-
imations to reduce the computational cost associated
with the construction, storage, and retrieval of the sum-
maries. Our goal is to reduce the cost while maintaining
the soundness of the pruning, i.e., the guarantee of no
missed paths.

4.1 Under-Approximation
We prove that, in general, any under-approximation of
Πpost[l] can be used in Algorithm 3 to replace Πpost[l]
while maintaining the soundness of our redundant path
pruning method; that is, we can still guarantee to cover
all valid paths of the program. In many cases, using an
underapproximation Π−

post[l] to replace Πpost[l] can make
the computation significantly cheaper. The reason why
it is always safe to do so is that, by definition, we have

Π−
post[l] → Πpost[l]. Therefore, if (pcon ∧ c) → Π−

post[l]
holds, so does (pcon ∧ c)→ Πpost[l].

A main advantage of our new pruning method is
that it allows for the use of (any kind of) under-
approximation of the table Πpost[ ] while maintaining
soundness. This is in contrast to ad hoc reduction tech-
niques for test reduction, where one has to be careful
not to accidentally drop any executions that may lead
to bugs. Using our method, one can concentrate on
exploring the various practical ways of trading off the
pruning power for reduced computational cost, while
not worrying about the soundness of these design choic-
es.

In principle, we can use a hash table with a fixed
number of entries to limit the storage cost for Πpost[l].
With a bounded table, two global control locations l and
l′ may be mapped to the same hash table entry. In this
case, we may use a lossy insertion: Upon a key collision,
i.e., key(l) = key(l′), we heuristically remove one of
the entries, effectively making it false (hence an under-
approximation).

In the actual implementation, we exploit the knowl-
edge of program structures to reduce the number of
summary constraints. Considering that loops are the
major component of a trace, we only store and check
the summary at the first instance of a branch in loops.
The intuition is that when one subsuming check fails at
some branch in a loop, there is little chance of success at
its following check points in the same loop. Our experi-
ments confirm that such strategy is not only efficient in
reducing the checking time and memory consumption,
but also incurring little affect on the number of pruned
paths and instructions.

We also use a fixed threshold to bound the size of the
individual logic formula of Πpost[l]. That is, we replace
Line 9 in Algorithm 3 by the following statement:
if (size(Πpost[l]) < bd) Πpost[l]← Πpost[l] ∨ wp;

4.2 Summary Simplification

Algorithm 4 CombineSummary(S, d)
1: for (each item d′ ∈ S)
2: flag ← false;
3: if (d′ and d are combinable)
4: Let c and c′ be the divergence root of d and d′;
5: d′ ← remove c′ from d′;
6: S ← S\{d′};
7: return CombineSummary(S, d′);
8: end if
9: end for

10: if (flag == false)
11: S ← S ∪ {d};
12: end if
13: return S

The size of summary constraints certainly has impact
on the efficiency of subsumption checking. Besides a
brute-force approach to bound its size, we simplify the
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constraints before they become too big. In particular, we
combine two constraint terms in a summary if possible.

The computation of summary is based on weakest pre-
condition computation, as presented in Algorithm 3. The
procedure produces summary constraints in the format
of conjunctive normal form(CNF). Two disjunctive terms
d = c1 ∧ . . . cn ∧ cn+1 and d′ = c′1 ∧ . . . c′n ∧ c′n+1 are com-
binable if (1) ci = c′i(1 ≤ i ≤ n) and (2) cn+1∨c′n+1 = true.
We call cn+1 and c′n+1 the divergence roots of d and d′.
For instance, d = c1 ∧ c2 ∧ c3 and d′ = c1 ∧ c2 ∧ c3 are
combinable and their divergence roots are c3 and c3. Two
disjunctive terms can be replaced by one by throwing
away the divergence roots. In our example, d and d′ are
replaced by c1 ∧ c2.

Algorithm 4 gives the pseudo-code of the summary
simplification procedure. When a disjunctive term d is
added to a summary S, our method carries out an
iterative search to locate a d′ that is combinable with
d. When such term is found (Line 3), the algorithm
recursively looks for more combinable terms at Line 7.

We find such straight-forward optimization effective
in practice. Consider the program given in Figure 3.
At the end of the postconditioned symbolic execution,
six paths are explored. Table 2 describes the process of
summary computation for the branch statement at Line
1 in Figure 3. The first column gives the unique path
index, followed by a sequence of branches that each path
goes through. Underlined line numbers indicate else-
branches. The following two columns give the summary
constraints with and without simplification, respectively.
We also list the summary constraint at Line 9 in Figure 3,
with and without simplification , in Table 3. As observed
in both tables, the simplification can significantly reduce
the size of summary constraints.

1: if (x>0) {
2: a++;
3: if (a>0)
4: b++;
5: else
6: b--;
7: } else
8: a--;

9: if (y>0)
10: c++, e++;
11: if (c>0)
12: d++;
13: else
14: d--;
15: } else
16: e--;
17: assert(e > 0);

Fig. 3: A simple program with variable definitions
omitted.

TABLE 3: Symbolic computation for the program in
Figure 3.

Sum9 Sum′
9

I1: e− 1 > 0 ∧ y ≤ 0
I2: e− 1 ≤ 0 ∧ y ≤ 0 I1: true
I3: (e > 0 ∨ e < 0) ∧ c+ 1 ≤ 0 ∧ y > 0
I4: (e > 0 ∨ e < 0) ∧ c+ 1 > 0 ∧ y > 0

4.3 Avoid Unnecessary Weakest Precondition Com-
putation
Our method requires weakest precondition computation
along each explored path, which has a strong impact
on the efficiency of the the method, as confirmed by
our empirical study on overhead. Since postconditioned
symbolic execution always adopts depth-first search, we
exploit this fact to improve the performance of weak-
est precondition computation by reusing the results of
previous computation on path prefix.

Old

O1 Ox-1 Ox+1 On… …

New

N1 Nx-1 Nx+1 Nm… …

Ox

Nx

firstDBr = x

Fig. 4: Two adjacent paths: the previous path(Old) and
the present one(New).

Figure 4 presents two adjacent paths Old and New
with each node indicating a branch. They share a path
prefix up to index x − 1 and separate at x. In order to
enable reuse, we store the result of the latest weakest
precondition at each branch instance. When we conduct
the weakest precondition computation along path New,
there is no need to propagate condition N1 to Nx−1

along the path, because it is the same as that with O1

to Ox−1 along path Old that has already been computed
and stored. Thus, the weakest precondition computation
along path New only needs to propagate Nx to Nm along
New and reuses the weakest precondition from N1 to
Nx−1.

Let WP [p][i] be the weakest precondition of path p at
the i-th branch instance, and WP [p]ij be the transferred
condition of that from the j-th branch instance when
it arrives the i-th branch along path p. We can get the
following weakest precondition computation equation.

WP [New][i] = WPold[i] ∧WPnew[i]

WPold[i] = ∧diffDBr−1
j=i WP [Old]ij

WPnew[i] = ∧mj=max(i,diffDBr)WP [Old]ij

(1)

The new computation of the weakest precondition
at the i-th branch contains two parts: WPold[i] and
WPnew[i], which respectively represent the reused part
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TABLE 2: Symbolic computation for the program in Figure 3. The bold items are the newly updated items.

path idx path Summary at Line 1 Summary at Line 1(after simplification)
1 1 9 17 I1: e− 1 > 0∧ y ≤ 0∧ x ≤ 0 I1: e− 1 > 0∧ y ≤ 0∧ x ≤ 0

2 1 9 17

I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0 I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0
I2: e− 1 ≤ 0∧ y ≤ 0∧ x ≤ 0 I2: e− 1 ≤ 0∧ y ≤ 0∧ x ≤ 0

⇒ I1: y ≤ 0∧ x ≤ 0

3 1 9 11
I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0 I1: y ≤ 0 ∧ x ≤ 0
I2: e− 1 ≤ 0 ∧ y ≤ 0 ∧ x ≤ 0 I2: c+ 1 ≤ 0∧ y > 0∧ x ≤ 0
I3: (e > 0∨ e < 0∧ x ≤ 0)∧ c+ 1 ≤ 0∧ y > 0∧ x ≤ 0

4 1 9 11

I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0 I1: y ≤ 0 ∧ x ≤ 0
I2: e− 1 ≤ 0 ∧ y ≤ 0 ∧ x ≤ 0 I2: c+ 1 ≤ 0 ∧ y > 0 ∧ x ≤ 0
I3: (e > 0 ∨ e < 0) ∧ c+ 1 ≤ 0 ∧ y > 0 ∧ x ≤ 0 I3: (e > 0∨ e < 0)∧ c+ 1 > 0∧ y > 0∧ x ≤ 0
I4: (e > 0∨ e < 0)∧ c+ 1 > 0∧ y > 0∧ x ≤ 0

⇒ I1: x ≤ 0

5 1 3

I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0
I2: e− 1 ≤ 0 ∧ y ≤ 0 ∧ x ≤ 0 I1: x ≤ 0
I3: (e > 0 ∨ e < 0) ∧ c+ 1 ≤ 0 ∧ y > 0 ∧ x ≤ 0 I2: Sum′

9 ∧ a ≤ 0∧ x > 0 ⇒ a ≤ 0∧ x > 0
I4: (e > 0 ∨ e < 0) ∧ c+ 1 > 0 ∧ y > 0 ∧ x ≤ 0
I5: Sum9 ∧ a ≤ 0∧ x > 0

6 1 3

I1: e− 1 > 0 ∧ y ≤ 0 ∧ x ≤ 0 I1: x ≤ 0
I2: e− 1 ≤ 0 ∧ y ≤ 0 ∧ x ≤ 0 I2: a ≤ 0 ∧ x > 0
I3: (e > 0 ∨ e < 0) ∧ c+ 1 ≤ 0 ∧ y > 0 ∧ x ≤ 0 I3: Sum′

9 ∧ a > 0∧ x > 0
I4: (e > 0 ∨ e < 0) ∧ c+ 1 > 0 ∧ y > 0 ∧ x ≤ 0
I5: Sum9 ∧ a ≤ 0 ∧ x > 0 ⇒ true
I6: Sum9 ∧ a > 0∧ x > 0

and the changed part compared with the previously
explored path.

In order to understand the reason that such optimiza-
tion is efficient, consider the following code snippet:

if (A) {...} else {...}
if (B) {...} else {...}
if (C) {...} else {...}
if (D) {...} else {...}

After the first path ABCD is explored, the summary
constraints produced by the weakest precondition com-
putation are D, D1 ∧ C, D2 ∧ C1 ∧B, D3 ∧ C2 ∧B1 ∧ A
at the four control locations in reverse order. Here we
use superscripts to indicate the transformations of the
conditions. The second path is ABC¬D, which shares
prefix ABC with the previous path. In our implementa-
tion only ¬D is propagated, while Ci, Bi and Ai are
reused during the weakest precondition computation.
Finally, we can easily construct the weakest precondition
at the four control locations along the second path: ¬D,
¬D1 ∧ C, ¬D2 ∧ C1 ∧ B, ¬D3 ∧ C2 ∧ B1 ∧ A, in which
only ¬D, ¬D1, ¬D2 and ¬D3 need to be reconstructed.

5 EXPERIMENTS

To evaluate the effectiveness of postconditioned symbol-
ic execution in pruning redundant test cases, we consider
the following research questions:

• Q1: (Efficiency of pruning) Compared with KLEE,
how much redundancy is there in real-world appli-
cations?

– Q1.1: How many redundant paths can be
pruned by PSE?

– Q1.2: How many redundant instructions can be
pruned by PSE?

– Q1.3: How much faster is PSE than KLEE?

• Q2: (Pruning overhead) How much computational
overhead does the pruning method introduce? With
such computational overhead, are there net benefits
for applying the pruning?

– Q2.1: How much computational overhead of
weakest precondition computation does the
pruning method introduce?

– Q2.2: How much computational overhead of
subsumption check does the pruning method
introduce?

• Q3: (Optimizations Evaluation) How does our opti-
mizations affect the result of before research ques-
tions?

– Q3.1: How does the under-approximation strat-
egy affect the efficiency of path pruning?

– Q3.2: How does the optimization of summary
simplification affect the memory consumption?

– Q3.3: How does the strategy of avoiding unnec-
essary weakest precondition computation be-
tween two adjacent paths affect the efficiency
of path pruning ?

We have implemented the proposed method in K-
LEE, which is a state-of-the-art symbolic execution tool
built on the LLVM platform. It provides stub func-
tions for standard library calls, e.g., using uclibc to
model glibc calls, and concrete-value based under-
approximated modeling of other external function calls.
In practice, this is a crucial feature because system calls
as well as calls to external libraries are common in real-
world applications.

5.1 Subjects and Methodology
We have conducted experiments on a large set of C
programs from the GNU Coreutils suite, which imple-
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ments the basic commands in the Unix/Linux operating
system. These programs are of medium size, each with
between 2000 to 6000 lines of code. They are challenging
for symbolic execution tools partly because they have
extensive use of error checking code, pointers, and heap
allocated data structures such as lists and trees.

Each program is first transformed into the LLVM
bytecode using the standard Clang/LLVM tool-set. The
symbolic execution procedures take the LLVM bytecode
program and a set of user annotated symbolic variables
as input. The symbolic inputs are variables that represent
the values of the program’s command-line arguments.

5.2 Effectiveness of Pruning
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Fig. 5: KLEE v.s. postconditioned symbolic execution.

We evaluate the effectiveness of our pruning method
by comparing postconditioned symbolic execution a-
gainst KLEE, which uses the standard symbolic execu-
tion procedure described in Algorithm 1. We run both
methods on each benchmark program for up to three
hours (10800 seconds). For PSE, we run it with all
optimization options enabled.

For these experiments, we have used the symbolic
command-line arguments and stdin as inputs of the
programs, while bounding the string sizes of the content
of each argument to 2. The programs are all terminating
due to the proper test harness and the bound on the size
of the symbolic inputs. All experiments were performed
on a computer with a 2.66 GHz Intel dual core CPU and
4 GB RAM.

Figure 5 shows the scatter diagram that compares the
performance of PSE against KLEE. The X-axis and Y-
axis give the execution time in seconds of all the 94
benchmarks. If the experiment of a benchmark exceeds
the time limit, we show its execution time as 10800
seconds in the figure. The figure clearly indicates that
the standard symbolic execution is more efficient when a
benchmark is small, and PSE starts to outperform KLEE
when the size of benchmarks become larger. This is what
we have expected as postconditioned symbolic execution
incurs significant overhead, which is to be presented
in Section 5.3. Due to the interest in the cases when

applying standard symbolic execution is challenging, for
the rest of the section we only give the experimental
results of the 57 benchmarks that take PSE less than 3
hours and take KLEE more than 300 seconds(5 minutes)
to complete.

The experimental results are given in Table 4. Col-
umn 1 lists the names of the benchmarks. Columns 2
to 4 compare the number of explored paths by PSE
and KLEE. Columns 5 to 7 compare the number of
executed instructions by PSE and KLEE. Columns 8 to 10
compare the execution time of PSE and KLEE in seconds,
where TO (Time Out) indicate that the corresponding
program did not terminate within the given time limit.
Note that the table gives the improvement in terms of
the reduction ratio in the number of explored paths
and instructions, as well as the speedup ratio in the
execution time, of PSE over KLEE. With pruning of
PSE, the number of paths required to achieve exhaustive
coverage is reduced by about 3.34X. That is, on average
about 60% of paths are considered redundant by our
method. Most of the reduction actually comes from path-
suffix elimination rather than whole-path elimination.
This is indicated by the column that compares the num-
ber of executed instructions. Compared with KLEE, PSE
reduces the executed instructions by about 23.03X. The
results confirm our conjecture that redundancy due to
common path suffix is abundant and widespread in real-
world applications and our new method is effective in
eliminating the redundant paths.

The speedup in time, however, is less drastic. Other
than the 18 benchmarks that KLEE cannot complete
within the three hour time whereas PSE can, the average
speedup achieved by PSE is 2.26X. This is in contrast
with 3.34X and 23.03X in the path and instruction re-
ductions. In Section 5.3, we give the reasons. Note that
for all the programs on which KLEE terminates PSE also
terminates.

5.3 Pruning Overhead
There are two major sources of overhead incurred by the
pruning.

•• Weakest precondition computation: After each path
exploration, we need to conduct weakest precondi-
tion computation along the path, which increases
the computational cost as well as memory usage as
we need to store complex postconditions at control
locations.

• Subsumption check: We need to conduct SMT solv-
ing to check whether the current execution is sub-
sumed by previous paths. The solving is expensive
and it may also increase the internal SMT memory
consumption.

Figures 6 and 7 show the pruning overhead. Figure 6
presents three kinds of time: check time, wp time and all
time, which represents the time spent on subsumption
check, weakest precondition computation, and complete
execution, respectively. It is obvious that in most cases
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TABLE 4: Comparison between KLEE and PSE.

Test Program #Explored Paths #Explored Instructions Time(s)
Name PSE KLEE KLEE/PSE PSE KLEE KLEE/PSE PSE KLEE Speedup in time
arch 855 1375 1.61X 196761 12230344 62.16X 936.77 1994.71 2.13X
base64 441 1058 2.40X 148328 9417607 63.49X 574.48 1511.49 2.63X
chcon 1398 3752 >2.68X 4380247 33297373 >7.60X 2963.82 TO >3.64X
chgrp 1418 3920 >2.76X 17226071 35310651 >2.05X 4334.54 TO >2.49X
chmod 1453 3661 >2.52X 11231299 33568918 >2.99X 2374.96 TO >4.55X
chown 1672 3925 >2.35X 30090329 35531856 >1.18X 4524.18 TO >2.39X
comm 885 2522 2.85X 303775 22936623 75.51X 2442.85 4087.59 1.67X
cp 1276 3636 >2.85X 2142868 35361275 >16.51X 2170.98 TO >4.97X
csplit 930 3235 3.48X 1029691 31998354 31.08X 2560.72 10444.05 4.08X
dircolors 415 1178 2.84X 567953 13579980 23.91X 1237.65 1655.75 1.34X
dirname 220 564 2.56X 139147 4923714 35.38X 656.86 439.13 0.67X
du 297 949 3.20X 12256156 628662146 51.29X 1517.39 2646.26 1.74X
expand 415 762 1.84X 549802 7820299 14.22X 759.56 456.87 0.60X
expr 69 651 9.43X 96507 3919884 40.62X 212.01 400.52 1.89X
factor 1387 3812 >2.75X 12689346 36507426 >2.88X 6987.52 TO >1.55X
fmt 206 792 3.84X 172154 6489860 37.70X 921.54 1770.91 1.92X
fold 423 967 2.29X 1753427 10143108 5.78X 1238.27 1063.06 0.86X
ginstall 1166 4911 4.21X 813196 48857663 60.08X 2729.9 10467.79 3.83X
head 1114 3721 >3.34X 11166367 59874383 >5.36X 5744.35 TO >1.88X
hostid 855 1375 1.61X 142635 12278096 86.08X 1335.15 1360.31 1.02X
hostname 505 1375 2.72X 635920 13029976 20.49X 1167.23 1292.04 1.11X
id 423 1340 3.17X 25599403 54103365 2.11X 981.52 1218.79 1.24X
join 636 3699 >5.82X 2021675 33468346 >16.55X 3106.17 TO >3.48X
link 1348 2748 >2.04X 13756342 32876548 >2.39X 7284.34 TO >1.48X
ln 495 1510 3.05X 981995 19212957 19.57X 3729.76 5714.31 1.53X
logname 855 1375 1.61X 109812 12247184 111.53X 1945.39 2029.9 1.04X
ls 1275 3192 >2.50X 47579632 895733467 >18.83X 7785.94 TO >1.39X
mkdir 1134 2783 >2.45X 1231570 33579827 >27.27X 3197.3 TO >3.38X
mkfifo 867 2649 >3.06X 1108867 31240588 >28.17X 1194.03 TO >9.04X
mknod 1109 1756 1.58X 2546180 15913533 6.25X 1678.84 2275.7 1.36X
mktemp 1102 3279 2.98X 3323201 31495317 9.48X 2764.32 5299.09 1.92X
mv 963 3446 >3.58X 1162161 34060036 >29.31X 2851.12 TO >3.79X
nice 44 637 14.48X 290825 4894266 16.83X 759.57 1017.04 1.34X
nl 1100 2148 >1.95X 6204453 19874892 >3.20X 3127.31 TO >3.45X
nohup 105 924 8.80X 120661 9846460 81.60X 752.84 624.17 0.83X
od 832 2851 3.43X 2931253 43443017 14.82X 1794.58 4409.97 2.46X
printenv 937 3663 3.91X 2217897 8047843 3.63X 2079.58 2637.18 1.27X
printf 1288 2014 >1.56X 2192027 21631625 >9.87X 1278.46 TO >8.45X
ptx 532 1914 3.60X 1114112 46610662 41.84X 2579.68 3312.43 1.28X
readlink 400 745 1.86X 82000 5598617 68.28X 891.12 643.47 0.72X
rmdir 1134 3132 >2.76X 9368427 33400578 >3.57X 3609.24 TO >2.99X
setuidgid 358 1848 5.16X 375051 32832492 87.54X 3811.23 4646.58 1.22X
shuf 457 1611 3.53X 191179 14473864 75.71X 857.33 6240.45 7.28X
sleep 855 3173 >3.71X 7422576 46972683 >6.33X 1683.14 TO >6.42X
sort 396 1801 4.55X 524288 22398578 42.72X 1789.56 2114.36 1.18X
split 298 738 2.48X 162246 4421955 27.25X 784.08 460.14 0.59X
touch 305 1288 4.22X 205836 2337850 11.36X 954.32 1303.89 1.37X
tr 776 1690 2.18X 876831 16302848 18.59X 1897.87 3323.09 1.75X
tsort 381 580 1.52X 131983 5176989 39.22X 963.9 640.34 0.66X
tty 1193 1927 1.62X 1119129 20813531 18.60X 1933.18 3288.5 1.70X
uname 1013 2162 >2.13X 7842392 18587205 >2.37X 9535.2 TO >1.13X
unexpand 259 812 3.14X 475743 8682733 18.25X 623.71 771.77 1.24X
uniq 368 939 2.55X 515168 8559681 16.62X 408.01 437.42 1.07X
unlink 477 1375 2.88X 654482 12939395 19.77X 1704.79 2164.11 1.27X
uptime 64 577 9.02X 451747 5475778 12.12X 1157.96 709.71 0.61X
users 378 577 1.53X 390157 5257283 13.47X 813.82 712.63 0.88X
whoami 855 1375 1.61X 302790 12437691 41.08X 1701.18 1909.14 1.12X
Average - - >3.34X - - >23.03X - - >2.26X
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Fig. 6: Check time and weakest precodition computation time of PSE.
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Fig. 7: Memory consumed by KLEE v.s. PSE.

the check time and wp time are the major source of
the pruning overhead. On average, the majority of the
time (70%) is spent on subsumption check and weakest
precondition computation. These computations are not
needed in standard symbolic execution. It is worth point-
ing out that, despite the large computational overhead,
PSE has achieved considerable time speedup for large
programs. Figure 7 compares the memory used by PSE
and KLEE. On average, compared with KLEE, PSE needs
about 1.87X more memory.

5.4 Evaluation of Optimizations
In this subsection we evaluate the effectiveness of our
optimizations. Note that when evaluating an optimiza-
tion, we enable all the other optimizations and present
the result with / without the evaluated optimization.

Under-approximation. We have evaluated subsump-
tion check with and without under-approximation. The
under-approximation is mainly to conduct summary at
selected branch instances. In our current implementa-
tion, we skip all the instances but the first one of a
branch. In addition, we bound the size of each summary
to 200. Among the benchmarks, six of them, including

factor, fold, join, ls, mkdir, and uname, fail to terminate
within the three-hour time limit without such under-
approximation. For other programs, we give the time
usage and memory consumption ratio with and without
the optimization in Figure 8. As expected, our under-
approximation strategy not only speeds up the subsump-
tion check, but also greatly reduces its memory con-
sumption. On average, there is a speed up of 1.97X, and
2.64X reduction in memory consumption. In addition,
only about 7% more instructions are executed.

Summary simplification. Summary simplification can
not only reduce the memory consumption, but also
speed up subsumption check. In Figure 9, we com-
pare the memory consumption with and without this
optimization. On average, about 43% more memory is
consumed without summary simplification. Figure 10
depicts the time usage for subsumption check. On av-
erage, summary simplification leads to a 2X speedup.

Reusing weakest precondition computation. Fig-
ure 11 compares the time usage for weakest precondition
computation with and without reusing previous results.
On average, such optimization achieves a speedup of
2.56X. In addition, five test cases, including factor, head,
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Fig. 8: Time usage and memory consumption ratio with and without under-approximation.
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Fig. 9: Memory consumption with and without summary simplification.

ls, mkdir, and uname are omitted from Figure 11 because
without the reusing heuristics, weakest precondition
computation fails to terminate within the time limit of
three hours.

5.5 Threats to Validity of Evaluation
Based on our experiments on GNU Coreutils suite, we
learn that program semantics do not have direct impact
on postconditioned symbolic execution. However, the
experimental results depend on two factors that are the
program structure of the benchmarks and experiment
parameters.

Program structure. The program structure of the
benchmarks may affect the effectiveness of postcondi-
tioned symbolic execution. First, our method is based

on the observation that many path suffixes are shared
among different test runs. The occurrence rate of com-
mon suffixes in a benchmark may have an impact on the
results for Q1. As showed in Table 4, our tool achieves
various speed-up. In the extreme case where there is no
common path suffix, our method probably deteriorates
performance. Although our empirical study on Coreutils
suite confirms that redundancy due to common path
suffixes is both abundant and widespread, more exper-
iments on diverse benchmarks are helpful to verify our
observation. Second, from Section 5.3, we have learned
that around 70% test time is spent on subsumption check
and weakest precondition computation. Therefore, the
two types of overhead have significant impact on the
performance of postconditioned symbolic execution. The
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Fig. 10: Time usage for subsumption check with and without summary simplification.
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Fig. 11: Time usage for weakest precondition computation with and without
reusing the result between two adjacent paths.

cost of subsumption check and weakest precondition
computation is sensitive to data and control depen-
dencies in a program. Third, our optimization methods
are all based on some insights in symbolic execution.
They are effective only under specific program pattern-
s. For example, in the under-approximation optimiza-
tion, we skip all the instances except the first because
of the knowledge about loop structure mentioned in
Section 4.1. The occurrence rate of program snippets
also effects results of experiment for Q3.1, which is the
reason that we obtain different time usage and memory
consumption ratios for the programs in Figure 8.

Experiment parameters. In our evaluation, we used
ad hoc values for some parameters in the experiment

settings and tool implementation. For example, we set
the string size in each argument of Coreutils programs
to 2 and set the time limit to three hours for the
experiments. These parameters affect evaluation results
from Q1 to Q3. We also tuned some parameters in the
implementation of our tool. For instance, we limited
the size of each summary to 200 when implementing
the under-approximation optimization. As the under-
approximation is used to balance memory consumption
and pruning precision, this bound value has an impact
on the experimental results for Q3.1.
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6 RELATED WORK

As we have mentioned earlier, there is a large body
of work on test input generation based on symbolic
execution [2], [3], [4], [5], [6], [1]. Some symbolic exe-
cution methods and tools have been used in real appli-
cations [10], [11], [12], [13]. However, a major obstacle
that prevents these methods from getting even wider
application is the path explosion problem. Although there
are efforts on mitigating the problem, e.g., by using
methods based on compositionality [14], abstraction-
refinement [15], interpolation [16], [17], [18], [19], and
parallelization [20], [21], [22], [23], [24], path explosion
remains a bottleneck in scaling symbolic execution to
larger applications.

6.1 Reduction by Interpolation

McMillan proposed a redundancy removal method for
symbolic execution, called lazy annotation [25], [16]. The
method computes an interpolant from an unsatisfiable
formula due to the unreachability of certain branch
conditions in a program. The interpolant can be regarded
as an over-approximated set of forward reachable states.
Similarly, Yogi [26], [27] uses interpolants along infeasi-
ble program paths, chosen based on concrete test-case ex-
ecutions, in order to strengthen a partition-graph of the
state space of a program. Jaffar et al. [17], [18], [19] pro-
posed a similar method in the context of dynamic pro-
gramming, for computing resource-constrained shortest
paths and analyzing the worst-case execution time. In
TRACER [28], [29], [30], [31], they extended works by
using interpolation in the context of symbolic execution,
which aim to tackle path exponential exploration and
infinite-length symbolic paths due to unbounded loops.
The idea of interpolant has also been used in other
program analysis techniques, such as model checking
[32], [33], [34], [35] and program verification [36], [37].

Although interpolant is more general than weakest
precondition, it is also more expensive to compute and
requires special constraint solvers. For example, TRAC-
ER [30], [31] performs symbolic execution computing
approximated weakest preconditions as interpolants and
employs CLP(R) [38] as solver. However, our tool works
on quantifier-free first-order logic formula and decides
formulas by STP [39], a SMT solver.

6.2 Reduction by Compositionality

There are also pruning methods based on computing
summaries. For example, Godefroid [14] proposed a
function summary based compositional test generation
algorithm, where the input-output summary of a previ-
ously explored function is computed and stored into a
database; when the function is executed again, the sym-
bolic constraints are reused. This was extended in [40]
with a demand-driven top-down approach that uses
execution trees. Instead each method summary is repre-
sented as a first-order logic formula with uninterpreted

functions and the composition is performed entirely
using SMT solving. A further extension [41] was pro-
posed, named compositional may-must program analy-
sis, to speed up symbolic execution using the result from
over-approximated analysis and vice versa. Majumdar
and Sen [15] proposed a demand-driven abstraction-
refinement style hybrid concolic testing algorithm, which
can achieve a similar reduction. Păsăreanu et al. [42]
described a preliminary investigation of compositional
symbolic execution for Java bytecodes. They use partial
evaluation, a well-established technique that aims at
automatically specializing a program with respect to
some of its input, to build method summaries consisting
of several path-specialized versions of the method code.
Qiu et al. [43] proposed a new structure, called memo-
rization trees, to capture heap operations when calling a
function and then replay it in symbolic execution to get
speed up.

However, our new method is significantly different
from above works in that our common path suffix elimi-
nation method is not restricted to the function boundary,
and does not need the abstract-refinement loop.

6.3 Reduction by Reusing Constraint Solutions and
Constraint Reducing
Constraint solution reuse is an effective approach to save
the time of constraint solving in symbolic execution [44],
[45], [46] . The GREEN tool [44] by Visser et al. provides a
wrapper around constraint satisfiability solvers to check
if the results are already available from prior invocations,
and reuse the results if available. As such, they can
achieve significant reuse among multiple calls to the
solvers during the symbolic execution of different paths.
GREEN achieves this by distilling constraints into their
essential parts and representing them in a canonical
form. The reuse achieved by GREEN is at a much lower
level. GreenTrie [45] and Recal [46] are extensions to the
Green framework, which support constraint reuse based
on the logical implication relations among constraints.
GreenTrie provides L-Trie to store constraints and solu-
tions into tries. Recal proposed powerful simplifications
and new canonical form of the constraints to reuse equiv-
alent constraints in large repositories. As such, the reuse
is orthogonal to the pruning by our method. Therefore, it
would be interesting to see if GREEN and GreenTrie can
be plugged into our symbolic execution framework to
achieve more reduction—we leave this for future work.

Reducing the size of constraints is another popular op-
timization approach of SAT/SMT solvers and symbolic
executors [1], [4], [47]. For example, KLEE [1] does some
constraint reductions before solving, such as expression
rewriting, constraint set simplification and implied value
concretization. As our work is building on KLEE, these
reduction techniques have been integrated into our tool.

6.4 Reduction by State Merging
Recently several techniques for state merging [48], [49],
[50], [51], [52] have been proposed to tackle the path-
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explosion problem. The state merging reduction pro-
posed by Kuznetsov et al. [48] was based on the idea
of merging the forward reachable states obtained on
different paths, which can lead to a decrease of the
number of paths that need to be explored. Collingbourne
et al. [51] use ϕ-node folding to replace control-flow
forking with predicated select instructions in order to
reduce the number of paths explored by symbolic exe-
cution. Bugrara and Engler [49] present a technique that
attacks path explosion by eliminating paths that cannot
reach new code before they are executed. However, the
methods differ significantly from our work in that state
merging is a reduction based on the forward paths
(prefixes), whereas our method is a reduction based
on the backward analysis (suffixes). In general, these
techniques are orthogonal to our method and may be
used together to complement each other.

MergePoint [50] alternates between path-based explo-
ration of dynamic symbolic execution(DSE) and state-
merging based exploration of static symbolic execution.
The main idea of MergePoint is exploiting static symbol-
ic execution to mitigate the difficulty of solving formulas,
while alleviating the high overhead associated with a
path-based DSE approach. So, MergePoint is orthogonal
to our pruning method. MULTISE [52] proposes a tech-
nique for merging states incrementally during symbolic
execution, without using auxiliary variables, which maps
each variable to a set of guarded symbolic expressions.
MULTISE is a new symbolic execution framework with
abstract state representation and execution semantics
using value summaries, and is completely different from
DSE. However, our method is an effective reduction
method based on DSE.

6.5 Other Symbolic Execution Research
There also exist techniques for quickly achieving struc-
tural coverage in symbolic execution [53], [54], [55], [56]
or increasing the coverage of less-traveled paths [57],
[58]. Another line of research in this domain is guided
symbolic execution, such as reaching a statement [59],
[60], [61], checking a rule [62], [63] and exploring the
difference between versions of a program [64], [65], [66],
[67]. These techniques differ from ours in that they are
for specific target or application, and do not attempt
to achieve the complete path coverage. Our method,
in contrast, focuses on sound pruning techniques for
achieving the complete path coverage.

7 CONCLUSIONS AND FUTURE WORK

We have presented a new redundancy removal method
for symbolic execution, which can identify and eliminate
path suffixes that are shared by multiple test runs. We
have implemented a prototype software tool and evalu-
ated it on real applications. Our experiments show that
redundancy due to common path suffixes are abundant
and widespread in practice, and our method is effective
in eliminating redundant paths. However, the speedup

in execution time is less impressive due to memory
and computation overheads. In the future, we plan to
more carefully examine the trade-offs between effective
redundancy removal and the computational cost of de-
tecting and eliminating such redundancy. We believe that
heuristics based on static program analysis can make the
pruning more efficient. In addition, we plan to develop
parallel algorithms that speed up postconditioned sym-
bolic execution.
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“Reusing constraint proofs in program analysis,” in Proceedings
of the International Symposium on Software Testing and Analysis, ser.
ISSTA ’15. ACM, 2015, pp. 305–315.

[47] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, 2006,
pp. 322–335.

[48] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2012, pp. 193–
204.

[49] S. Bugrara and D. R. Engler, “Redundant state detection for
dynamic symbolic execution,” in 2013 USENIX Annual Technical
Conference, San Jose, CA, USA, June 26-28, 2013, 2013, pp. 199–211.

[50] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in 36th International Confer-
ence on Software Engineering, ICSE ’14, Hyderabad, India - May 31 -
June 07, 2014, 2014, pp. 1083–1094.

[51] P. Collingbourne, C. Cadar, and P. H. J. Kelly, “Symbolic cross-
checking of floating-point and SIMD code,” in Proceedings of
the Sixth European conference on Computer systems, EuroSys 2011,
Salzburg, Austria, April 10-13, 2011, 2011, pp. 315–328.

[52] K. Sen, G. C. Necula, L. Gong, and W. Choi, “Multise: multi-
path symbolic execution using value summaries,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, 2015,
pp. 842–853.

[53] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided test
generation for coverage criteria,” in IEEE International Confer-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2017.2659751

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



ence on Software Maintenance (ICSM 2010), September 12-18, 2010,
Timisoara, Romania, 2010, pp. 1–10.

[54] X. Ge, K. Taneja, T. Xie, and N. Tillmann, “DyTa: dynamic
symbolic execution guided with static verification results,” in
International Conference on Software Engineering, 2011, pp. 992–994.

[55] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies
of loop problems for structural test generation via symbolic
execution,” in IEEE/ACM International Conference On Automated
Software Engineering, 2013, pp. 246–256.

[56] M. Baluda, G. Denaro, and M. Pezzè, “Bidirectional symbolic
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