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ABSTRACT service implemented in BPEL can thus be viewed as a distributed

system with both multi-threading and message passing. These con-
current language constructs give BPEL processes the ability to exe-
cute complex business tasks. However, they also result in complex
concurrent behaviors that make the web service composition prone

We propose a novel method for modular verification of web ser-
vice compositions. We first use symbolic fixpoint computations to
derive conditions on the incoming messages and relations among
the incoming and outgoing messages of individual BPEL web ser- o
vices. These pre- and post-conditions are accumulated and serve a¥f e1rors and difficult to analyze.

a repository of summarizations of individual web services. We then To tack_le the difficult problem of_analyzm_g a .CO’?“POS'te web ser-
compose the summaries of the invoked BPEL services to model ex-VICE, a widely adopted approach is modeling individual processes

ternal invocations, resulting in a scalable verification approach for &S Varnants c;fgommun_icat_inggnite sta_tel QaChi”eS [138!136,1}32’ Zﬁ]
web service compositions. Our technical contributions include (1) OF variants of Communicating Sequential Processes (CSP [18]) [14,

an efficient symbolic encoding for modeling the concurrency se- 20]. (;n these approachﬁs, thﬁ composed Sy.Stem IS moq?lgd Ey
mantics of systems having both multi-threading and message pass-a prob uctfautomaton, w ebre t e state\;sv%e_xlce IS gxro::enlt(la |nht €
ing, and (2) a scalable method for summarizing concurrent prosessen”m er of component web services. lie model checking has

that interact with each other using synchronous message passing?€€n used to ﬁanal?/ze thhe conlleirrent behaviors of suclh c_omposgte
along with a modular framework that utilizes these summaries for systems, it suffers from the well-known state space explosion prob-
scalable verification. lem. Since languages like BPEL are designed for composing large

. . ) distributed systems, state explosion limits the application of such
Categories and Subject Descriptors:D.2.4 [Software/ Program

NS . verification techniques.
Verification): Model checking We propose a scalable method for analyzing web service com-

General Terms: Verification position which is based on a symbolic encoding of the interleav-
Keywords: Modular Verification, Summarization, BPEL ing execution semantics of a BPEL process and a summarization
algorithm for concurrently running processes. The process sum-
maries are utilized in a modular verification framework. We also
1. INTRODUCTION

introduce an intermediate graph representation, calledcurrent

The increasing interest in web-based business process manageprocess Graph (CPG}o model the interacting processes. CPG is
ment has heightened the need for development of automatic ver-a natural extension of the standard control flow graph, with special
ification techniques and tools for analyzing complex concurrent nodes added to handle concurrency. It provides a uniform represe
behaviors among web services. Web services play an importanttation of a set of BPEL processes and facilitates a simple definition
role in web-based business process management, serving as basigf the formal semantics.
building blocks of inter-organizational interaction and cooperation.  Summarizing concurrently running BPEL processes is not a triv-
Business Process Execution Language (BPEL), used to orchestratga| task, since it involves handling both internal multi-threading and
web services, is one of the standard languages designed to enablexternal message passing. Specifically, there are two concurrency
universal interoperability. A BPEL process can dynamically in- related features in BPEL. The first one is thew construct, which
voke external services asynchronously or synchronously, as well creates multiple threads that are executed concurrently within a
asfork andjoin concurrent threads internally. A composite web process. We model the concurrent execution of activities associ-
p— - . ated with different threads using the interleaving semantics. We
C‘I'Chllzs_ovgcigolgsssupported in part by NSF grants CCF-0614002 and propose a disjunctive symbolic representation of the transition re-
' lation of the multi-threaded component to avoid the unnecessary
addition of stuttering transitions often seen in a more conventional
conjunctive representation. This makes the symbolic reachability
analysis of a single component more efficient in practice.
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rization of the invoked service as a weakest pre-condition, strongestfication task.
post-condition pair. Since the invoker and invokee processes are In order to achieve modular verification of web services, Beyer
running in parallel and may share multiple messages, a naive ap-et al. [2] proposed web service interfaces that specify proper se-
proach similar to sequential procedure call summarization does notquences of service invocations and the corresponding return values.
work, e.g., read-write conflicts over common variables may inval- These interfaces can then be used to check whether two services are
idate the summaries. We address this problem by adding a specialcomposable, and whether two services are substitutable. However,
set of auxiliary variables that store tieapshotof the messages  this work does not address how to automatically extract the service
at the time of send/receive events; we derive and compose the suminterfaces from the service implementations.
maries using these auxiliary variables. An essential observationis Duanet al.[8, 9] present a weakest pre-condition and strongest
that, in service-oriented architecture, the interaction between ser- post-condition semantics for a subset of BPEL activities. However,
vices are limited to messages (without any shared variables) andtheir derivation of pre- and post-conditions over concurrent threads
hence concise summarization of processes is often achievable.  relies on the explicit enumeration of interleaved thread executions
We have implemented these techniques in a prototype tool calledand, hence, is not efficient for handling the interleaving semantics
Concurrent System Verifier (CSV), a modular static verifier for of f | ow activities (pairs of fork and join), an essential feature of
analyzing concurrent processes. Instead of building a monolithic BPEL processes. We address this problem by using a symbolic
model through in-lining or automata product composition, we an- fixpoint computation with disjunctive symbolic encoding.
alyze processes individually and perform modular verification by ~ The ability to summarize concurrent processes is fundamental to
composing summaries of processes. The tool automatically parsesa modular verification framework. Esparza and Podelski general-
BPEL and WSDL, constructs the corresponding CPGs and transi- ized the inter-procedural analysis for summarizing sequential pro-
tion relations, computes process summaries, composes summariesedures to parallel programs [10] using process algebra, in which
of the invoked services, and checks assertions and safety propertiesstates are specified as terms and transitions are specified via rewrit-
ing rules. They showed that the extension of the inter-procedural
setting to parallel programs does not increase the complexity of

2. RELATED WORK computing transition closures.
Below we discuss some of the related work on the verification of ~ When concurrent executions are allowed to interfere with each
BPEL processes and modular verification techniques. other, the pre- and post-conditions as summaries are no longer ad-
equate. To address this problem, Qadeeasl. [24] proposed a
BPEL Verification. transaction-based summarization. Each transaction is an atomic

Niels et al. [21] developed a complete Petri-Net semantics for region such that for any execution with interference, there is an ex-
BPEL. They model interacting behaviors of BPEL processes as ecution without interference which gives the same result. Based on
Workflow Nets (WFN), a Petri Net where tokens are bounded. They thiS, one can analyze each atomic region sequentially.

further characterize proper interactions of environment as an oper- 1 ne main difference between our work and the earlier results on
ating guideline, and ensure the controllability based on synchro- Summarization in the presence of concurrency [10, 24] is that, we
nization and production over Petri Nets. summarize message-passing processes rather than sharedymemor

Fosteret al.[14] use Labeled Transition System Analyzer (LTSA) threads. In BPEL web services, remote processes communicate
based on a process algebra to check compatibility of web service SCI€ly by sending and receiving messages without access to any
compositions in BPEL. Huynh [20] also presents a mapping from shared variables. A process may consist of multiple local threads
BPEL processes to BPE-processes, which can subsequently be andhat share common variables among themselves; however, threads

lyzed by the Concurrency Workbench tool [5] to check if it satisfies [T0M the same process do not communicate with each other via
CTL* properties. messages. Therefore, processes form a natural functionatiboun

Fu et al. [15, 16] perform LTL model checking by translating &7 summaries (pre- and post-conditions of processes) can be ex-

BPEL to Promela and feeding it to SPIN [19]. BPEL processes are Pressed solely in terms of the incoming and outgoing messages.
represented as guarded automata, where XML data and XPath ex- Finally, compositional reasoning for concurrent programs has
pressions are interpreted precisely by bounding the XML Schema P€€n explored in other contexts [6, 4, 27]. Cobleiglal.[6] apply
types. Nakajima [23] represents BPEL processes as Extended FinitéSSUme-guarantee reasoning in the LTSA tool to achieve composi-
state Automata and also uses SPIN for LTL model checking. tlonal verification. The assumption 01_‘ the environment is |terat|vel)_/
Fault handling and compensation handling in BPEL can be an- refined by counterexamples. In Magic [4] and Comfort [27], Chaki

alyzed by translating them to timed automata, which are then an- €t @l- employ predicate and action-guided abstractions within a
alyzed using UPPAAL [25]. To deal with the timing aspects of counter-example guided abstraction refinement scheme. Parallel
BPEL like time-outs, an abstract notion of global system time is COMponents are abstracted by conservatively aggregating states to-
introduced [12]. Haddaet al. [17] further extend this work from gether, and are refined later to eliminate spurious counterexamples.
discrete time to real time by using timed automata to model the Compared to those iterative refinement approaches, we perform ef-
XLANG activities. ficient verification on concrete states by leveraging the distinction

In most of the works discussed above, concurrent processes ard’€Ween shared memory and message-passing structures.

considered as separate entities (e.g., automata) and concurrency is

modeled by a parallel product of these entities. This approach has3. MODELING BPEL PROCESSES

scalability problems due to the well-knovatate space explosion We propose concurrent process graphs (CPGs) for modeling
problem, i.e., the number of states of a system in the worst case iSBPEL processes. CPGs are an extension of the standard control
exponential in the number of concurrent components. flow graphs used for modeling sequential programs, with addi-
tional features added to model concurrency constructs. The CPG
Modular Verification. representation can model both shared-variable multi-threading and

Modular verification techniques [1, 6, 4, 27, 13, 28] try to as- processes communicating via messages. Hence, CPGs can serve
suage the state space explosion problem by decomposing the verias an intermediate representation of individual BPEL processes as



well as composite services with multiple interacting BPEL processesthe channeth. A send and ar ecei ve are paired if they com-
municate through the same channel. We assume thatseoi
3.1 Concurrent Process Graphs andr ecei ve are blocking and the execution of the corresponding
send and receive actions are synchronous (like CSP [18]). When-
DEFINITION 1. A concurrent process graph (CPG) is a tuple ever asynchronous communication is needed, i.e., veleen is

(N, Var, Chl, E), such that non-blocking and ecei ve is blocking, we can model it by explic-
itly adding a buffer thread to the channel. For example, a chan-
e N is afinite set of nodes, nel with arbitrary delay can be modeled by renaming the channel
. . . of send (ch!z) andreceive (ch?y) into chi!z andcho2?y and
e Varis afinite set of variables, then adding a separate buffer thread. The buffer thread consists

of two nodesni,n2, and two edges; = (ni,n2,true,chi?z)

Chlis a finite set of communication channels, and .
° ’ andex = (n2,n2,true, cho!z). Between the execution efi and

e E C N x N x Guard x (AssignJ SendJ ReceiveJ {—}) the execution ok, the buffer thread may introduce arbitrary de-
is a finite set of edges, where lay (when the scheduler decides to execute threads other than this
buffer thread). Note that in this example the size of the buffer is
— Guard is a set of conditional expressions over Var, one. One can extend the construction to a bounded size buffer by

adding more auxiliary variables to record the received messages.
The set of edges contains two types of edges E,,UFE; where

— SendC Chl x {!} x Exp is a set of send activities, [, N E, = (). Anedgee € E, is anor mal edge defined as above.
where Exp is a set of expressions over Var, Anedgee € E; is al i nk edge, which imposes a “happens-before”

— ReceiveC Chix {?} x Var is a set of receive activities. ~ 'elation between its source and target nodes; that is, the outgoing

edges of the target node cannot be executed before the execution

We characterize the set of nodes and edges in a CPG below.  ©f the incoming edges of the source node completes. Typically, the
source and target nodes of ank edge belong to different threads

— Assign is a set of assignment statements over Var,

Node Set. of the same BPEL process, and the action lof ak edge isno- op.
The set of nodes in a CPG is defined as the union of three disjoint AS discussed below in section 312,nk edges are defined partic-
sets of nodesN = N,, U N; U N;. Anoden € N, is anor nal ularly for modeling BPEL processes. In section 3.3, we show that

node, which models the sequential execution of a thread. One of ON€ can removei nk edges from a given CPG by adding auxiliary
the incoming edges must be executed before control is transferregShared variables.

to this node, and from this node only one of the outgoing edges can .
be executed. A node € Ny is af or k node, which represents the 3.2 Translating BPEL Processes to CPGs

starting point for the parallel execution of multiple threads. One of A composite web service consists of a set of interacting BPEL
the incoming edges must be executed before control is transferredprocesses, each of which may have more than one thread. The root
to this node, and from this node all the outgoing edges are executedof a BPEL process is identified by ttrRoCESskeyword, which
simultaneously in one step. Finally, a nade N; is aj oi n node, contains the actual workflow defined by the top activity. A BPEL
which represents the end point for the parallel execution of multiple activity can be a basic activity or a structured activity: Basic activi-
threads. All incoming edges must be executed (simultaneously in ties areRECEIVE, REPLY, INVOKE, ASSIGN, THROW, TERMINATE,
one step) before control is transferred to this node, and from this waT, andeEmMPTY. Structured activities arBEQUENCE SWITCH,
node only one of the outgoing edges can be executed. WHILE, PICK, FLOW, SCOPE COMPENSATE

The two distinct sources of concurrency in a composite web ser-  Figure 2 shows a sample BPEL specification [11] (with simpli-
vice can be modeled yor k andj oi n nodes. The first one comes  fied BPEL code). The entire system consists of four interacting
from theFLow activity inside a BPEL process, where all child ac-  processesapproval approver assessqrandcustomer The ap-
tivities run concurrently. The second one comes from the concur- proval process is invoked by the customer, and invokes the assessor
rent execution of interacting BPEL processes. Although there is no and approver processes withirreow activity. In this FLOw ac-
explicit BPEL language construct for the second case, this type of tivity five threads are activated simultaneously. All processes are
concurrency can be modeled by adding a paif @fk andj oi n executed concurrently and interact with the approval process.
nodes: the fork node has outgoing edges to the entry points of the The activitiesRECEIVE, REPLY, INVOKE are related to the send-
individual BPEL processes, and the join node has incoming edgesing and receiving of messages. SpecificallRECEIVE activity in

from the exit points of the individual BPEL processes. BPEL directly maps to a CPG receive actioh{z) and a reply ac-
tivity (as well as an asynchronousvokEe) in BPEL directly maps

Edge Set. to the CPG send actior/{!exp). A SynchronousNvoKE activity

An edgee € F is associated with a tuplgu1, n2, g, ), where maps to a CPG send/{!exp) which is then immediately followed
n1 € N is the source nodey, € N is the target nodgy € Guard by a CPG receivech?x); that is, after sending a message having
is the guard, and € AssignJ SendJ ReceiveJ {—} is the action, the current value ofxp to invoke a remote service, it immediately
which can be amassi gnment (« € Assigr), asend (« € Seng, a waits for the returning message in The ASSIGN activity maps
recei ve (o« € Receivg or ano-op (o € {—}). directly to a CPG assignment actian {= exp). The TERMINATE,

Let exp be an expression over variables\ar. An actiona € WAIT, EMPTY activities in BPEL can also be easily modeled by
Assignis anassi gnnent of the formv := exp, which sets the CPG nodes and edges.
next state value of to the current value ofzp. The SEQUENCEactivity in BPEL represents the sequential ex-

An actiona € Sendis asend of the formch!lexp, which sends ecution of its child activities and is modeled by nodes of normal
the current value oézp as a message through the chantiel An type. TheswITCH, WHILE, SCOPEactivities also map directly

actiona € Receiveis arecei ve of the form ch?v, which sets to corresponding structures in a standard (sequential) control flow
the next-state value afto the value of the message received from graph. TherLow activity in BPEL represents concurrent execu-
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Figure 1: The CPG of theloanapproval example
I ](g92) L] (g,)
a | (request.amourt4, —) 7 | (true, approvallnfo.accept:="yes’
b | (request.amoupt4, —) 8 | (true, catch?error)
c | (riskAssessment.risk="low’s-) | 9 | (true, chl4lerror)
d | (riskAssessment.risklow’, —) | 10 | (true, ch13?request)
e | (true, —) 11 | (true, riskAssessment.risk:="low’
f | (true, —) 12 | (true, ch31!riskAssessment)
1 | (true, ch41?request) 13 | (true, ch12?request)
2 | (true, ch13!request) 14 | (true, approvallnfo.accept:="yes’
3 | (true, ch31?approvalinfo) 15 | (true, ch24!approvallnfo)
4 | (true, chl2lrequest) 16 | (true, ch4llrequest)
5| (true, ch21?riskAssessment) | 17 | (true, ch41?approvallnfo)
6 | (true, chl4lapprovallnfo) 18 | (true, catch?error)

Table 1: The guards and actions of the edges in Figure 1

tion of its child activities; it is mapped to a pair bér k andj oi n
nodes in the CPG. Theick activity is similar toswiITCH, except
that control may transfer to its child activities in a nondeterministic
fashion.

Now we use the example in Figure 2 to show the modeling of

BPEL concurrency constructs in CPG. The corresponding CPG is

given in Figure 1. P1, P2, P3 and P4 modpproval assessar
approverand customerprocess, respectively. When drawing this
graph, the following notation is used:) denotes aor mal node,

A denotes & or k node, andy denotes g oi n node. There are
up to ten concurrent executions in the CPG shown in Figure 1.
Note that inside thapprovalandcustomerprocesses, theauLT-
HANDLER also contributes an execution thread that runs concur-

be invoked after th& ECEIVE activity completes, and when the re-
quest amount is greater than or equal to 4”. As mentioned eatrlier,
LINK can be modeled directly as a special CPG edge.

3.3 Constraints on the CPG Representation

Before we delve into how to perform symbolic verification on
CPGs using the interleaving semantics in the next section, we im-
pose several constraints on the CPG to ease the symbolic encoding.
Note that this is done without loss of generality: If a given CPG
does not satisfy these constraints, we rewrite it into a functionally
equivalent form that satisfies the constraints.

Let (N, Var, Chl, E) be a CPG representing a BPEL process. For
an edges = (n1,n2, g, o), We Usee.sre, e.tgt, e.cond, ande.act
to denote the source node, the target node, the guard, and the action
of e, respectively. The set. E;,, = {e|e € E, e.tgt = n} denotes
the set of incoming edges of, and the set..Fo,: = {¢| e €
E, e.src = n} denotes the set of outgoing edges:of

We assume that the following constraints hold foralt N:

e Vn € Ny, Ve € n.Eoyue, We havee.cond = true and
e.act = —; otherwise, we insert a new nodg; between
e.src ande.tgt (Figure 3-left).

e Vn € Nj, Ve € n.Eou, We havee.cond = true and
e.act = —; otherwise, we insert a new nodg; between
e.src ande.tgt (Figure 3-middle).

e Vn € N, among the two sets. F;, andn. F,,:, at most one
set contains i nk edges, i.en.Ey, N E; = 0 or n.Eyye N
E, = 0; otherwise, we split the node intey, andn;, such
thatniq.Fin = n1.Ei, andniy. Eour = n1. oy (Figure 3-
right).

We also remove thei nk edges in a given CPG by introducing
new binary variables. For eath nk edgee, = (ni,n2,9,—) €
E;, we allocate a new binary state varialdle,. Recall thatEl =
E; U E,, whereF,, is the set ohor mal edges.

e First, we addk, := 1 as anactionto akt € E,, N n1.Eyy.

e Second, we adg A lk, = 1 as a guard antk,, := 0 as an
actionto alle € E,, Nns2.Eip.

Note thatlk,, is set tol upon the completion of the source node
n1, andlk, is set to0 upon the completion of the target node.
Furthermore, the execution of node is guarded additionally by

g N lk, = 1. After these modifications, we remove the link edge
from the CPG. After removing alli nk edges, we expand the set
of variables tovar U {lk, | ea € Ei}.

4. SYMBOLIC ANALYSIS OF CPGS

In this section we discuss verification of CPGs using symbolic
reachability analysis [22]. In order to encode the interleaving se-
mantics symbolically we identify the set of threads in a given CPG
and introduce one program counter variable for each thread.

Specifically, we assume that all edges are executed by a set of

rently with the main flow of the process. The guards and actions of concurrent thread$hread For the purpose of tracking the thread

labeled edges are shown in Table 1. The edges labelediftorh8
arenor mal edges, while the edges labeled frano f arel i nk

execution, each thread € Threadis associated with a distinct
program counter (PC) variabje;. Let P = {pc; | t; € Thread

edges. The modeled BPEL statements are also labeled in Figure 2denote the set of PC variables. We assume that each mode
A partial execution order on threads within a process can be N has a unique index, denoted masd. The domains of the PC

specified byLINK attributes of thesLow activity in BPEL. For ex-
ample,LINK a is between th&RECEIVE activity and theiINVOKE
activity for invoking remote process P3. The guardLafk a is
(request.amount > 4), meaning that “th@ssessoprocess must

variables satisfy the following constraint/pc € P,dom(pc) C
{n.id|n € N}U{L}. If pc; = n.id, then some € n.Eyq: Will
be executed by thread in the next step. Ipc; = L then thread;
is inactive. We assign eaehe N a PC variable, denoted aspc,
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(processApproval)
(flow )
(links )
(link name=receive-to-approval
(link name=receive-to-ass¢ss
(link name=setMessage-to-reply
(link name=assess-to-setMessége
(link name=assess-to-approyal
(link name=approval-to-rep}y
(/links )
(receive) . ..
(sourcelinkName=receive-to-assess
transitionCondition=. . ./)
(sourcelinkName=receive-to-approval
transitionCondition=. . ./)
(/ receive)
(invoke )
inputVariable=. ..
outputVariable=. ..
(target linkName=receive-to-approva)
(target linkName=assess-to-approvél
(sourcelinkName=approval-to-repl§)
(/invoke )
(invoke )
inputVariable=. ..
outputVariable=. ..
(target linkName=receive-to-assegs

(sourcelinkName=assess-to-setMessage

transitionCondition=. .. /)
(sourcelinkName=assess-to-approval
transitionCondition=. . ./)
(/invoke )
(reply ) ...

(target linkName=setMessage-to-regly

(target linkName=approval-to-repls)

(/ reply )
(assign) . ..

(target linkName=assess-to-setMessage
(sourcelinkName=setMessage-to-reply

(/ assign)
(/flow )
(faultHandler )
(catch) ... (/catch)
(reply ) ... (/reply )
(/faultHandler )
(/process)
(processAssessor)
(sequence
(receive) ... (/ receive)
(assign) ... (/ assign)
(reply ) ... (/ reply)
(/ sequence
(/process)
(processApprover)
(sequence
(receive) ... (/ receive)
(assign) ... (/ assign)
(reply ) ... (/ reply )
(/ sequence
(/process)
(processCustomer)
(invoke )
inputVariable =. ..
outputVariable=. ..
(/invoke )
(faultHandler )
(catch)...(/ catch)
(/faultHandler )
(/process)

Figure 2: The loanapproval example
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such thatn.pc = pc; if and only if somee € n.FE,.: is executed
by threadt;. In this case, we say nodebelongs to thread;. We
also usen.tid to denote the id of the thread thabelongs to.

Note that the set$hread P, andn.pc are not associated with
the original CPG. In the following section, we propose a heuristic
algorithm to discover a candidate set of threads and PC variables,
and assign a PC variable to each node.

4.1 Thread Discovery and PC Variable
Assignment

We assume that, in any CPG, thread creation and termination op-
erations (corresponding tar k andj oi n) are always nested; that
is, if threadB isf or ked from thread4, then thread3 shouldj oi n
back before threadl terminates. Whenever a CPG is produced
from a BPEL process, this assumption is guaranteed to hold. The
assumption significantly simplifies the algorithm for assigning PC
variables. We can simply perform a Depth-First Search (DFS) of
the graph, and assign new PC variables only when visiting the fol-
lowing nodes: (1) entry node of a process, and (2) every successo
of af or k node, except for the first one. All other nodes, including
the first successor of tor k node, belong to the same thread as
their predecessor nodes. jAi n node belongs to the thread of a
predecessor node that has the smallest thread index.

Algorithm 1 ASSIGN_PC\WAR( G)
1: for each noden € N do
2. n.pc=NULL;
3 n.visited = 0;
4: end for
5
6
7

D nunPC=1;
PP={}
. ASSIGN_PC\WAR_DFS(G.entryNode );




Algorithm 2 AssSIGN_PC\WAR_DFS(n; )

1: if nq.visited == 0then

ni.visited = 1;

if n1.pc == NULL then
n1.pc = nunPC; // assigning a PC var
P =P U {penunprc};
nunPC = nunPC +1;

ceive thread is at the source node of the receive edge. If one thread
is ready for a sendh!exp but the other thread is not yet ready for
the corresponding receivéi?x (or vice versa), no transition from
these two threads will be executed since there is no corresponding
transition formula in7".

In the sequel, we use Xw to denote the set of state variables
being written to by an edge. When an actiore.act is an
assi gnnent , e.g.,v := exp, variablev belongs tee. Xy. When
e.act is ar ecei ve, e.g.,ch?x, variablex belongs tce. Xy .

Now we present the algorithm for building the disjunctive tran-
sition relationT. LetT = \/, . T. whereT. is the transition
relation for an individual edge € E. We start by iterating through
the sety of CPG edges. The pseudo code of this procedure is given
in Algorithm 3. HereFE,;sitca € F denotes the set of already vis-
ited edges. For each edgec F, we useX,;sitea C X to denote
the set of state variables that are assigned, either explicitly through
actions or implicitly through control flow transition. We do not add
a transition formula t@” for send edges — these formulae are added
when processing the corresponding receive edges.

Algorithm 3 ENCODE_INTERLEAVING( G)

end if
for eache € n1.Eoy: do
ng = e.tgt,

10: if no € Ny then
11: if e is the first edge im1.F,,: then
12: N2.pCc = N1.pc;
13: end if
14: else ifny € N; then
15: if no.pc == NULL or na.pc > ni.pcthen
16: N2.pCc = N1.pC;
17: end if
18: else
19: if na.pc == NULL then
20: Nn2.pc = N1.pc;
21: end if
22: end if
23: ASSIGN_PC\WAR_DFS(n2 );
24: end for
25: end if

The pseudo code is presented in Algorithms 1 and 2, whsfe
SIGN_PC\AR is the entry point of the procedure. In this procedure,

numPC (which is initialized to 1) represents the total number of 101
PC variables (and, hence, the total number of threads) in the graph.11:
The auxiliary fieldn.visited is used to keep track of the visited — 12:
nodes during the DFS. We store the result of this computation, that 13:
is, to which thread each node belongs,napc. Recall that for 14:
n € N, n.pc stores the PC variablec;. 12
4.2 Disjunctive Transition Relation Encoding 17:

In symbolic model checking, the model is represented as a tu- 185
ple (I, T, X), wherel is the symbolic representation of the initial 19:

states and’” is the symbolic representation of the transition rela-
tion. X is the set of state variables, aid contains the next-state
copies of variables inX. Specifically, X = Var U {lk, | e, €

Ei} U P U {sel}, which includes BPEL variables, link variables, 23

PC variables, and an auxiliary variabéel that we later use to

model the interleaving semantics explicitly. Assume that the CPG 255

has a unique entry nodel € N, thenI is defined agni.pc =
ng. ’ld) A /\
be-created threacrs have a PC valueFurthermore, after a thread
terminates through execution of ai n edge, its PC value becomes

L again. The interleaving semantics is imposed by using a non- 29
deterministic scheduler variable calledl, whose domain is the

set of thread indices in the CPG. An edgec E, whose source

node belongs to thread (e.src.pc = pc;), is executed only when 325

(sel = i). Also note that when an edgec E is executed, state
variables that are not assigned new values on this edge must re3
tain their current values. According to the synchronous communi-

cation semantics, we model the synchronous executiah @fcp 36:
37: end for

38: return T

andch?z as if there is an assignment := exp (the next-state
value ofz is current value okxzp) added toT’. This assignment

©ONDA AL

(pc; = L1). In the initial state, all the yet-to- 275

1: T := false;
2: Evzszted — {}
3 for each edge : (n1,n2,g, @) in (E \ Eyisiteq) dO

Evz%fed - Evz%t?d U {6}
X’L)zszted - {n2 pC} Ue. XW,
Ts := (sel = n1.tid);
T. := (n1.pc = n1.id A g Ana.pc’ = no.id);
if n1 € Nf then
for each edge; € ni.Eout,e1 # e do
Eyisited := Puisitea U {el};
Xoisited = Xvisitea U {€1~tgt~p6};
T. :=T. A e1.tgt.pc’ = e;.tgt.id;
end for
else ifny € N; then
for each edges € na.Eiy,, e2 # e do
Em’,sited = E?M’,Sited U {62};
Xuisited ‘= Xuvisitea U {€2.57C.pC};
T, :=T. A es.src.pc = es.src.id N\ es.sre.pc = L
end for
end if
if ais assignment := exp then
T.:=T. NV = exp;
else ifa is receivech?x then
if des € E, es.act = chlexp then
Evisited = Evisited @] {63};
X'uz'sited = Xvisited U {GBtQtPC},
T..=T. Nz = exp;
Te := Te N ez.src.pc = es.src.id N\ eg.tgt.pc' =
es.tgt.id;
else
T.:=T. Nx' = %;
end if
else ifa is sendch!exp then
continue
end if
Te = Te A EUE(X\X
T:=TVTs NTy,

' =w;

visited

(synchronous execution of send and receive) happens only when

both threads are ready to communicate—when the PC of the send As an example, the result of applying the Algorithm 3 to part of

thread is at the source node of the send edge and the PC of the rethe CPG in Figure 1 is shown in Figure 5.



7 (no,n1,true, —) sel =1 Apcit =0Apcy =1Apch =14 Apcy =15Apcy =16 Apcy =1TA ...
(no, n1ia, true, —) (visited)
(no,nis,true, —)  (visited)
(no, nig, true, —)  (visited)
2)- (no,ni7,true, —)  (visited)
(n1, ng, true, —) sel =1Apcyt =1Apcy =2A 1k, =1Alk,=1)A...
(ns2, ng, true, —) sel =1 Apc1t =2Apca =6Apcs =9 Apeqa =11 Apes = 13/\p(:'1 :3/\;1)(:'2 =1A...
(na4, ns, true, —) sel =2 Apca =4Apch =5A...
(ns, ne, true, —) sel =2Apca =5Apch =6A (k. =1)A...
(ng, ns, true, —) (visited)
(n7,ng, true, —) sel =3 Apcs =TApcy =8A 1k, =1AIkL,=1)A...
(ng, ng, true, —) sel =3 Apcs =8Apch =9A...
(ng, ns, true, —) (visited)
(n10,n11,true, =) sel =4 Apca =10 Apc) =11 A ...
(n11,n3,true, —)  (visited)
(n12,n13,true, —)  sel =4 Apcs = 12 A pcy = 13 A (lk'f =1)A...
(n13,ng, true, —) (visited)

14Apchy =4NA(lka =1AN1lke =1)A ...
sel =3 Apcs =15 Apes =TA (lky =1) A ...
sel =4 Apca =16 Apcy =10 A (lke = 1 Alkp =1) A ...
sel =5 Apcs =17 Apcg =12 A (lkq = 1) A ...

(n14,mn4,true, —) sel = 2 A pca
(n15, 7, true, —)
(n16, n10, true, —)

(n17,n12, true, —)

Figure 5: Encoding of the interleaving semantics for the sample CPG

4.3 Monolithic Symbolic Verification We identify back edges in the CPG by a DFS starting from the

For a BPEL process without any external service invocation, we €ntry node. If the CPG is acyclic, the post-order of DFS gives
can model the process as a CPG, build a monolithic symbolic repre- & topological order and all edges are from lower ranked nodes to
sentation and check its correctness by symbolic reachability analy- higher ranked nodes. If the CPG has cycles,.. is identified as
sis. For a composite web service in which a BPEL process invokes the set of edges from higher ranked nodes to lower ranked nodes
a set of externally defined BPEL processes, we can build a single (W.I:t. the post-order of the DFS) and we label them as back edges.
CPG that includes all participating BPEL processes by adding a The removal of these edges makes the CPG a directed acyclic graph.
newentry nodewhich is af or k, with outgoing edges to the entry Our new reachability procedure in Algorithm 4 takes as para-
nodes of all participating processes; at the same time, adding a newmeters the state subspaker (the error states) as well &k
exit nodewhich is gj oi n, with incoming edges from the exit nodes ~ associated with tail blocks of back edgs.... We use the set
of all participating processes. In the monolithic verification model, S t0 represent the subset of already reached states that fall inside
all the variables are treated as global variables and the model isStack- The procedure terminates whenever the standard fixpoint
treated as a closed system. procedure terminates. The procedure retduhs: if a violation is

Given such a verification model, we can apply the standard sym- found, i.e., there exists sonsec Err that is reachable; the proce-

bolic fixpoint algorithm in model checking [22] for reachability
analysis. LetR be the set of reachable states frérim the model;
we start withR = I, and repeatedly computB U post(T, R),
wherepost(T, R) is the set of successor statesRf post(T, R)

is defined ag3X.R(X) AT (X, X"))[X/X'], where3X. denotes
existential quantification ofX, and[X/X’] denotes renaming’”’
with X. Maintaining the entire reachable state &tat every it-

dure returngrue if it is proven that no violation exists. In the later
case, we say a proof is found.

Algorithm 4 REACH_FRONTIER(T,I,E7rT,Spack)
1. FF=1;
2.5=1In Sback;

erations is costly. However, to detect convergence of this fixpoint 3 while F # § do

computation, the algorithm needs to store the already reached states .

(in order to stop as soon d@&*! = RY). Let R~! andR¢ be two
reachable state sets at two consecutive steps; thR‘sefR’ ! is
called thefrontier set[26]. In computingR***, post(T, R*\ R"™')
can be used instead pbst(T, R') to speed up the computation, if
the set{ R’ \ R*~') has a smaller symbolic representation.

if (FNErr)#0then

5: return false;

6 end if

7. F = (post(T,F)\ F)\ S;
8 S:SU(FﬂSback);

9: end while

In this paper, we apply a specialized symbolic search strategy 10: return true:

called REACH_FRONTIER to improve reachability fixpoint com-
putation [29]. It uses an augmenté&dntier setto detect conver-

gence. In reachability computation, a frontier set consists of all the

new states reached at the previous iteration; thatis= I, F* =
post(T, F*~1)\ F*~'. When the CPG is an acyclic graph, fixpoint
computation can stop wheR’ becomes empty. In the presence
of cycles, we can identify a set of back edgés,.. C E in the
CPG, whose removal will make the graph acyclic. 1St..x

VeEE

(e.sre.pc = e.src.id) denote the state subspace asso-

The symbolic analysis presented in this section is well suited for
analyzing individual BPEL processes, for which the CPG sizes are
often small. When applied to a composite web service, however,
such a monolithic verification method often suffers from the well-
known state space explosion problem, similar to the prior meth-
ods using automata product construction. In the next section, we

ciated With source nodes of the back edges. The set of alreadypresent a modular verification method, which analyzes BPEL

reached states that falls insidg,cr is S = R N Syack; the empti-

ness of the sgtF' \ R N Swacr) Can be used to detect convergence.

processes individually to compute their summaries before compos-
ing them together to verify the entire system.



5. MODULAR VERIFICATION OF WEB msgen), and (2) write outgoing messages (replace line 33 with

SERVICE COMPOSITION T. := T. A msg., = exp ). Note that a process-local transi-
. . . . tion system does not inline the invoker/invoked processes or their
We summarize both the safe invoking context and the behavior summaries

of a process in terms of its incoming and outgoing messages. The
safe invoking context (pre-condition) is computed using a back-
ward symbolic analysis starting from the gétr of error states
followed by projecting the result to thecoming messagesThe /\ IAMour.3X 0 . (Spre A e.sTC.pc = e.sre.id),
behavior of a process (post-condition) is computed using a forward ecReceive

symbolic analysis starting from the initial states, followed by pro-
jecting the result to the set afcoming messagesdoutgoing mes-
sages Assume that in a composite web service, the main process is
interacting with some external processes. We shall show that, un-
der certain conditions, by composing the summaries of the external .
processes, the reachability analysis of the main process itself is as,
precise as the monolithic analysis of the entire system.

We focus on checking safety properties, e.g., no violation of as-
sertions in the BPEL source code. A processateif no assertion
violation occurs during its execution (including all the embedded
service invocations). A process invocation is safe if no assertion
violation occurs during the execution of the invoked process.

For the following analysis, we assume that there is a unique pair
of send and receive edges for each channel. This constraint implies
that each message cagn only be written by one process oncg fAIgorlthm 5 REACH_PRET,ErT,Srec)
a channel is shared by multiple pairs of send and receive edges, D Stmyp 1= BT
we rewrite by creating multiple copies of the channel. (The above 2: SPTE = true \ (Semp N Srec);
constraint may not be satisfied by some types of BPEL processes in 3 tmp = Pre(T, Simp);
practice; we discuss this limitation in Sec 5.3.) Consider a process 4 While S, \ Simp # 0 do

We defineP.Pre as the conjunction of a set shfeconstraints
over (the incoming messages of) the receive edgés in

whereS,..Ae.src.pc = e.src.id is the set of safe states associated
with the source node of a receive edge.

Algorithm 5 computesS,,,.. as a greatest fixed point via a back-
ward analysis starting from the s of error states inP. Spr.
is the weakest pre-condition of the set of local assertion condi-
tions. In the pseudo code, we uSe,., to represent the set of
states that can readfirr. Syc. = \/,,cy(n.pc = n.id), where

= {e.src | e € Receivé, is the state subspace associated with
the set of source nodes of receive edges(T’, S) implements the
computation of pre-condition & with respect to the transition re-
lationT". The algorithm iteratively cuts states that may lead'to:
until a fixed point is reached.

modeled by a CPGN, Var, Chl, E). Fore € E, if e.act = chlexp 5- Spre := Spre \ (Stmp N Srec);

or e.act = ch?v, we usee.ch to denotech. With eachch € Chl, 6: Sjnrp = Stmpr

we associate a messagesgen. Mout = {Mmsge.ch | € € Send & Stmpj: pre(T, Stmp);

denotes the set of outgoing messages of the process)and= 8: end while

{msge.cn | € € Receivé denotes the set of incoming messages of

the process. We defineP.Postas the relation of all the outgoing messages in
For a processP, we useP.Pre to represent its safe invoking ~ Mou: and all the incoming messages ;.. Since the incom-

context, which is a constraint over the variables\ify,,. P.Preis ing messages to processdo not change insid®, we can com-

the condition under which invoking is guaranteed not to cause  pute P.Postby conjoining the relations between individual outgo-

assertion failure insid®. We useP.Postto represent the expected  ing messages and all the incoming messages as follows:

outcome of executing proce$ad P.Postis the precise relation of )

the variables inV/;,, ar?dpthe variables it/ . Tﬁe summary of an A 3Mouws \ {msge.cn} 3Xm.(Spost A e-tgt.pe = e.tgt.id),

individual processP is defined as a tuplé\f;,,, Mo, Pre, Pos}. c€send
In the following sections, we shall show how to compute the whereS,..: A e.tgt.pc = e.tgt.id is the set of reachable states as-

summary of an individual process. Note that the summary of each sociated with the target node of a send edge. Algorithm 6 computes

process is computed separately, without the consideration of (the Spos: as a least fixed point via a forward analys,.s: is the set

summaries of) other processes; that is, when computing the invokerof states reachable from the intersection set of initial statead

process, we do not need the summaries of the invoked processesSpyre.

Later, we shall show how to compose the summaries of all the in-  In the pseudo code, we Ustena = V,,cy(n.pc = n.id),

volved processes in analyzing the entire system. Finally, we would where N = {e.tgt | e € Send, to denote the state subspace as-

like to point out that the assertions may appear in any of the in- sociated with the target nodes of send edges. Sice depends

volved processes; it does not affect the order in which processessolely on the incoming messageshify,, (which do not change in-

are summarized. We shall explain that, by conducting a local analy- side P), the result can be computed by conjoinifig,.. with the

sis of the main process using the summaries of the other involved reachable states frothat the end (line 9).

processes, we can detect assertion violations in any of the involved 52 C . P S .
process, and the verification result is as precise as a monolithic ~* omposing Frocess summaries

analysis of the entire system. Now we describe how to utilize process summaries to achieve

. . modular verification of the entire system. Consider a system of

5.1 Computlng Process Summaries multiple interacting processes, each of which may contain some

Both P.Pre and P.Postare computed using process-local sym- assertion checks; our modular analysis proceeds as follows: (1) we
bolic fixed point computations. A local transition system7’, X) arbitrarily pick a process’, and for the remaining processes, we

for processP is constructed as followsX = M;,, U Moy U X, perform the process-local summarization as described in the pre-

is the set of state variables, whekg,, is the set of state variables  vious section; (2) after computing the summaries of all processes
that we have defined for a monolithic analysisfafThe transition exceptP, we derive goint summary and (3) when building the
relation T is computed by Algorithm 3 with slight changes: (1) process-local transition relation for proceBswe impose thgoint

read incoming messages (replace line 30 With:= T. A 2’ = summaryas a set of additional constraints (to be described in the



Algorithm 6 REACH_POST(T',1,Ssend, Spre)
D Stmp =1

Spost = Stmp N Ssend;

o Stnp = post(T, Stmp);

: while S,,,,, \ Stmp # 0 do

Spost = Spost U (Si/‘mp N Ssend);
Stmp = Sémpl

Stmp = post(T, Stmp);

. end while

Spost = Spost N Spre;

CoNORWNME

remainder of this section). A joint summary of a set of processes is
defined agM;n, Mour, PRE POST, whereM;n = Up P.Min,
Mouvr = Up P-Mout, PRE= A\, P.Pre, POST= A, P.Post

The transition systen/, T', X') of processP, which utilizes the
summary(M;x, Mour, PRE POST), is constructed as follows.
X = My U Mour U X,,, WwhereX,, is the set of process-local
state variablesT is constructed as in Algorithm 3 but the segment
from line 21 to 34 is replaced with the segment from line 1 to 20
in Algorithm 7. When building the transition relation of procd3s
each process invocation is treated as if it is a single transition step.

Algorithm 7 COMPOSE SUMMARY_PATCH( G )
1: if ais assignment := exp then

2. T.:=T. NV = exp;

3: else ifa is receivech?x then

4: if des € E, es.act = chlexp then

5: Eyisited := Euyisitea U {63};

6: Xoisited := Xvisitea U {GStgtpC}x
7 T, :=T. Nx' = exp;

8: T. := T. A es.src.pc = ez.src.id A es.tgt.pc =

es.tgt.id,;

9: elseifmsgen, € Mour then
10: T.:=T. ANz’ =msgen NPOST
11: else
12: T.:=T. N2 = %;
13: endif

14: else ifa is sendchlexp then

15:  if msgen € M then

16: Xoisited := Xvisited U MSYch;

17: msgl, = exp,

18: Assert é.tgt.pc = e.tgt.id A PRE);
19: endif

20: end if

Atline 10 in Algorithm 7, we impose the constraint (ovesg.)

derived from the invoked process. The encoding ensures that the

value ofz afterch?x is properly defined. At line 18, we add the

assertion to ensure that interaction with the external process is safe.
23 Modularity of Message-passing Processes

If the assertion is not satisfied, it means that an assertion is vio-

lated by the external process. For messages that do not correspon
to any processes that has been summarized (e.g., due to missin

BPEL source code), we adopt a conservative encoding to allow all
possible values, i.e., at line 12, the valueaoin ch?x becomes
nondeterministic.

ExampPLE 1. Consider the two processes in Figure 6, where
P, invokesPg and there is an assertion insidey: assert (y =
1) atna. The corresponding CPGs are given in Figure 6. There are
two different ways of applying our modular analysis method. For
the purpose of checking assertion violation, our analysis remains
sound and complete in both cases.

process PB

process PA

Figure 6: An example for process summary and composition

Case 1:We summarize proced3; first, and then verify process
P4 by composing the summary dPz. The summary ofPs is
({msgcn1}, {msgen2}, true, Post), where Pg.Postis

(msgen1 > 0 Amsgenz = +1)V
(msgen1 = 0 A msgeh2 = 0)V
(msgent < 0 Amsgens = —1)

Note that Ps.Postis the precise relation between the incoming
messages and the outgoing messages. After composing the sum-
mary of P, the transition relation of proced3, is

np — N1 (pc=0Apd =1)A(z' =1)
niy — no (pc =1Apc =2)A(msgL,, =)
ng — n3 (pc=2Apd =3)A (2 =z -1
A(msgeny = msgen)
n3 — N4 (pc =3 Apc =4) A (y' = msgen2 A Pp.Pos)

One can verify that whepc = 4, the assertion conditiofy = 1)
always holds.

Case 2: Alternatively, we can summarize proceBs, and then
verify processPg by composing the summary d?4. The sum-
mary of Pa is ({msgcna}, {msgcn1} ,msgen2 # 1,msgen1 =
1}). The transition relation of proced%; is

no — N1 (pc=0Apc =1)A(a' =msgen1)
A(msgen1 = 1)
ng — Ny (pc=6Apc =T7)A(msg.p, =b)

While composing the summary dt4, we shall add an assertion
to Pp at nodenr; that is,assert (msgcn2 # 1) atny. One can
verify that whenpe; = 7, the condition(msgcr2 # 1) always
holds, meaning that there is no assertion violation ingtde

Given a transition systen(/, T, X'), whereT is in disjunctive

?orm, we sayr € X is asymbolic constanif =’ = x holds for

all disjunctive transitions if’. When we conduct a process-local
analysis ofP, the incoming messages ifdare symbolic constants.
(P may change its local copies, but not the incoming messages
themselves.) Let us prove that, in Algorithm 6, we can compute the
set of states reachable frohm S, precisely, by conjoining,.
at the end of the reachability analysis (line 9).

LetC = {z | z € X,z isasymbolic constafitand (X') denote
a constraint over variables i. By definition,7'(X, X’) is equal
toT'(C,Y,Y')AC' = C,whereY = X \ C andT” = 3C".T.



We have the following property:
N _ « We developed a prototype tool that implements the techniques
post™ (T, I(C) A 1(X)) = 1(C) Apost™ (T, I(X))- proposed in this paper. The tool consists of three major compo-
This property states that, as long as variable§’imre symbolic nents: (1) Translator for BPEL+WSDL to CPG, (2) Composite
constants, one can precisely compute the fixed point of reachableSymbolic Model Checker, (3) Summarizer/Modular Verifier.
states form? (C') A I(X) by simply conjoiningl (C') with the fixed We first parse BPEL and WSDL documents and extract neces-
point of reachable states frohf.X ). Note that for a BPEL process, ~ sary control and data flow information. Then we construct the cor-
the reachable states frohfX) can be calculated in advance, and responding concurrent process graph (CPG). Depending on fype o
serve as a summary. verification usedrfionolithicor modularverification) we build the
We prove the property as follows: symbolic transition relations for the processes. After constructing
the symbolic encoding, we employ a symbolic model checker for
post(T, I(C) A I(X)) , , reachability analysis. We use a composite symbolic representation
(3X.I(C) AI(X) NT(X, X ))[X/X, ] , , , with an underlying symbolic library [3] that is able to handle mod-
(QY3C.I(C) A I(C,Y) A T(C; Y,C ’Y,))[C/,C /Y] els with both boolean and unbounded integer variables. The com-
FY(EC.TO)ACY)AT(CY,Y)NC = 0)) posite symbolic representation is used for symbolic model check-

[C/CDY /Y] ing with state sets represented over Binary Decision Diagrams and
= @AY(U(C) A (" Y) /\,T,(Clv Y; Y/))[C//C/])) Y/Y'] Pglyhedra over Iineafconstraints [30, 29].y ’
= @VUCO)ANCY)AT(CY,Y"))[Y/Y] In monolithic model checking, all BPEL processes are put into a
= HO)A(EYI(CY)AT'(C, Y,’ v ))[Y/,Y ) , single CPG, and then the symbolic reachability analysis is applied
= [[c(y(jyéf}\)()(él//l(/(%cﬂc’ Y)AT(CY,Y)NC" =0) to the resulting symbolic transition system. In modular verification,

we first compute summaries of the processes. While analyzing a

= I(C)AQEY.3CI(CY) A T(,C’ Y, C,; Y))C/CY/Y] process, we compose its transition system with the summaries of
= I(O)NEBXI(X)ANT(X,X")[X/X']

the other processes and then use symbolic reachability analysis.

I(C) Apost(T, 1(X)) We conducted experiments on two public benchmarks: loan ap-

By induction on the iterations gfost function, we have: proval and travel agency. The results are shown in Table 2 and Ta-
. . ble 3, respectively. The second column shows the result of mono-
post™ (T, I(C) A (X)) = I(C) Apost™(T, 1(X)). lithic analysis. Columns 3-6 shows the results of analyzing each
Consider that a procesB, sends a messagesg; to process individual process in modular analys_is. In the res_ult ré\/\indi—_

Pg, andP4 receives a messagesg- as the reply. To analyzBy, cates that a proof is found and assertions are not violated, Wiile

one needs to know the valuesrakg, W.r.t. msg; . This is obtained indicates t_hat the analysis is not ab!e to_terminsq'adicates that a

by computingpost™ (T, I(msg1) Al), whereTs is the process- summary is gen_era_ted. _The CPU time is given in seconds (s). The

local transition relation and is the initial states of?s. Since memory usage is given in mega bytes (MB). The ITRs row shows

msgi is never modified byP;, according to the property described ~ the number of iterations of the fixpoint computation.

above, one can computémsg; ) Apost* (T, Iz ) instead of com- In the monolithic analysis dban approva] the r.each.able states

putingpost* (T, I(msg1) A Ig). Inthis casepost™ (T, Iz) can of aII_ concurrent processes converged at3Beh iteration of_the

be computed separately without any information atigut During fixpoint computation, and a proof that none of the assertions are

the analysis of?4, we simply conjoinl (m.sg; ) with the summary violated was found. In the modular analysis, we summarize as-

of Pg. This is done implicitly in Algorithm 7 (line 10). sessor, approver, and customer processes before analyzirapthe r

Since we assume that there is a unique send and receive pair foProcess, approval. Although there is some overhead in summariz-
each channel, the value of each message is preserved after it is writing the first three processes, by applying these summaries to the
ten. As long as the fixed point of reachable states is computed pre-T00t process, we were able to reduce the runtimedtfit (from

cisely in Algorithm 5 and 6 (no widening is involved)REis the 1227.2 seconds to 124.5 seconds) and reduce the memory usage by
most permissive environment assumption of summarized processest0% (from 810 MB to 490 MB). _

andPOSTis the precise summary of the relation betwédpy and In the monolithic analysis dfavel agencythe computation ran
Mour. out of memory at thé&7-th fixpoint iteration. Neither a proof nor

Finally, for BPEL processes having multiple sends and receives & Violation was found. In the modular analysis, we successfully
on the same channel, we have to explicitly enumerate the possibleProved the correctness of root process (VTA) by first summarizing
ways of pairing up one send and one receive and assign each paiProcesses hotel, flight, and user. Compared to the monolithic analy-
a unique channel. When a naive algorithm is used, in the worst sis, modular verification of VTA took only fraction of the effort re-
case, we will end up creating too many possible CPGs. This is a guired for the (incomplete) monolithic analyst)(96% reduction
limitation of our CPG based symbolic analysis. Furthermore, if a in time and78% reduction in memory). o
send/receive activity is within a loop, we need to unwind the loop  Our experimental results on these two BPEL specifications show
fully before applying the CPG based analysis. that our modular verification method outperforms the conventional

In this paper, we perform composite model checking [3, 29, 30] monolithic verification techr_liqu_e both in terms of exec_qtion time
on systems having unbounded integers. In the integer domain, theBnd memory usage, resulting in a more scalable verification ap-
precise fixed point of reachable states is not always computable. Proach.

Although we can compute the precise reachable states in most of

the practical examples, there are cases where the fixed point com-7. CONCLUSION

putation may not converge. In such cases, we may apply approxi- e have proposed a modular verification method for compos-

mation techniques such as widening [7] to enforce convergence andite web services written in BPEL. Our approach is based on an

get a conservative summary. efficient symbolic encoding to model the interleaving semantics
of BPEL processes, which includes both shared variable multi-

6. EXPERIMENTS threading within a process and synchronous/asynchronous message



Monolithic \ Modular Verification
Verification | Approval | Assessor| Approver | Customer|

Result P P S S S
Time (s) 1227.2 1245 0.1 0.1 0.1
Memory (MB) 810 490 289 290 290

ITRs 32 16 10 10 5

Table 2: Analyzing the loan approval benchmark.

Monolithic \ Modular Verification \

Verification | VTA | Hotel | Flight | User |
Result NA P S S S
Time (s) 18947 814 | 135 | 134 | 346
Memory (MB) 1663 363 | 273 363 | 284
ITRs 57 55 23 22 30

Table 3: Analyzing the travel agency benchmark.

[12] R. Farahbod, U. Glasser, and M. Vajihollahi. An abstract
machine architecture for web service based business process
management. IBusiness Process Managemegdges
144-157. Springer, 2005. LNCS 3812.

[13] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia.
Modular verification of multithreaded prograni&heor.

Comput. Scj.338(1-3):153-183, 2005.

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility
verification for web service choreography.lhiternational
Conference on Web Servicgsges 738-741, 2004.

[15] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. Iinternational Conference on World Wide
Weh pages 621-630. ACM, 2004.

[16] X. Fu, T. Bultan, and J. Su. Model checking XML
manipulating software. linternational Symposium on
Software Testing and Analysizages 252262, 2004.

passing among processes. We present a novel method for analyzf17] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek.

ing and summarizing concurrently running processes, together with
a modular verification framework that utilizes the summaries for

scalable verification of the entire system.
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