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ABSTRACT
We propose a novel method for modular verification of web ser-
vice compositions. We first use symbolic fixpoint computations to
derive conditions on the incoming messages and relations among
the incoming and outgoing messages of individual BPEL web ser-
vices. These pre- and post-conditions are accumulated and serve as
a repository of summarizations of individual web services. We then
compose the summaries of the invoked BPEL services to model ex-
ternal invocations, resulting in a scalable verification approach for
web service compositions. Our technical contributions include (1)
an efficient symbolic encoding for modeling the concurrency se-
mantics of systems having both multi-threading and message pass-
ing, and (2) a scalable method for summarizing concurrent processes
that interact with each other using synchronous message passing,
along with a modular framework that utilizes these summaries for
scalable verification.

Categories and Subject Descriptors:D.2.4 [Software/ Program
Verification]: Model checking

General Terms: Verification

Keywords: Modular Verification, Summarization, BPEL

1. INTRODUCTION
The increasing interest in web-based business process manage-

ment has heightened the need for development of automatic ver-
ification techniques and tools for analyzing complex concurrent
behaviors among web services. Web services play an important
role in web-based business process management, serving as basic
building blocks of inter-organizational interaction and cooperation.
Business Process Execution Language (BPEL), used to orchestrate
web services, is one of the standard languages designed to enable
universal interoperability. A BPEL process can dynamically in-
voke external services asynchronously or synchronously, as well
as fork and join concurrent threads internally. A composite web
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service implemented in BPEL can thus be viewed as a distributed
system with both multi-threading and message passing. These con-
current language constructs give BPEL processes the ability to exe-
cute complex business tasks. However, they also result in complex
concurrent behaviors that make the web service composition prone
to errors and difficult to analyze.

To tackle the difficult problem of analyzing a composite web ser-
vice, a widely adopted approach is modeling individual processes
as variants of communicating finite state machines [15, 16, 12, 23]
or variants of Communicating Sequential Processes (CSP [18]) [14,
20]. In these approaches, the composed system is modeled by
a product automaton, where the state space is exponential in the
number of component web services. While model checking has
been used to analyze the concurrent behaviors of such composite
systems, it suffers from the well-known state space explosion prob-
lem. Since languages like BPEL are designed for composing large
distributed systems, state explosion limits the application of such
verification techniques.

We propose a scalable method for analyzing web service com-
position which is based on a symbolic encoding of the interleav-
ing execution semantics of a BPEL process and a summarization
algorithm for concurrently running processes. The process sum-
maries are utilized in a modular verification framework. We also
introduce an intermediate graph representation, calledConcurrent
Process Graph (CPG), to model the interacting processes. CPG is
a natural extension of the standard control flow graph, with special
nodes added to handle concurrency. It provides a uniform represen-
tation of a set of BPEL processes and facilitates a simple definition
of the formal semantics.

Summarizing concurrently running BPEL processes is not a triv-
ial task, since it involves handling both internal multi-threading and
external message passing. Specifically, there are two concurrency
related features in BPEL. The first one is theFLOW construct, which
creates multiple threads that are executed concurrently within a
process. We model the concurrent execution of activities associ-
ated with different threads using the interleaving semantics. We
propose a disjunctive symbolic representation of the transition re-
lation of the multi-threaded component to avoid the unnecessary
addition of stuttering transitions often seen in a more conventional
conjunctive representation. This makes the symbolic reachability
analysis of a single component more efficient in practice.

The second concurrent feature comes from the external service
invocation, i.e. when one process invokes another by message pass-
ing. For synchronous invocation, the invoker waits for the invoked
process to finish before it continues. For asynchronous invocation,
the invoker executes in a non-blocking fashion and proceeds for-
ward, waiting for the reply at a future point. We propose summa-



rization of the invoked service as a weakest pre-condition, strongest
post-condition pair. Since the invoker and invokee processes are
running in parallel and may share multiple messages, a naive ap-
proach similar to sequential procedure call summarization does not
work, e.g., read-write conflicts over common variables may inval-
idate the summaries. We address this problem by adding a special
set of auxiliary variables that store thesnapshotsof the messages
at the time of send/receive events; we derive and compose the sum-
maries using these auxiliary variables. An essential observation is
that, in service-oriented architecture, the interaction between ser-
vices are limited to messages (without any shared variables) and
hence concise summarization of processes is often achievable.

We have implemented these techniques in a prototype tool called
Concurrent System Verifier (CSV), a modular static verifier for
analyzing concurrent processes. Instead of building a monolithic
model through in-lining or automata product composition, we an-
alyze processes individually and perform modular verification by
composing summaries of processes. The tool automatically parses
BPEL and WSDL, constructs the corresponding CPGs and transi-
tion relations, computes process summaries, composes summaries
of the invoked services, and checks assertions and safety properties.

2. RELATED WORK
Below we discuss some of the related work on the verification of

BPEL processes and modular verification techniques.

BPEL Verification.
Niels et al. [21] developed a complete Petri-Net semantics for

BPEL. They model interacting behaviors of BPEL processes as
Workflow Nets (WFN), a Petri Net where tokens are bounded. They
further characterize proper interactions of environment as an oper-
ating guideline, and ensure the controllability based on synchro-
nization and production over Petri Nets.

Fosteret al.[14] use Labeled Transition System Analyzer (LTSA)
based on a process algebra to check compatibility of web service
compositions in BPEL. Huynh [20] also presents a mapping from
BPEL processes to BPE-processes, which can subsequently be ana-
lyzed by the Concurrency Workbench tool [5] to check if it satisfies
CTL* properties.

Fu et al. [15, 16] perform LTL model checking by translating
BPEL to Promela and feeding it to SPIN [19]. BPEL processes are
represented as guarded automata, where XML data and XPath ex-
pressions are interpreted precisely by bounding the XML Schema
types. Nakajima [23] represents BPEL processes as Extended Finite-
state Automata and also uses SPIN for LTL model checking.

Fault handling and compensation handling in BPEL can be an-
alyzed by translating them to timed automata, which are then an-
alyzed using UPPAAL [25]. To deal with the timing aspects of
BPEL like time-outs, an abstract notion of global system time is
introduced [12]. Haddadet al. [17] further extend this work from
discrete time to real time by using timed automata to model the
XLANG activities.

In most of the works discussed above, concurrent processes are
considered as separate entities (e.g., automata) and concurrency is
modeled by a parallel product of these entities. This approach has
scalability problems due to the well-knownstate space explosion
problem, i.e., the number of states of a system in the worst case is
exponential in the number of concurrent components.

Modular Verification.
Modular verification techniques [1, 6, 4, 27, 13, 28] try to as-

suage the state space explosion problem by decomposing the veri-

fication task.
In order to achieve modular verification of web services, Beyer

et al. [2] proposed web service interfaces that specify proper se-
quences of service invocations and the corresponding return values.
These interfaces can then be used to check whether two services are
composable, and whether two services are substitutable. However,
this work does not address how to automatically extract the service
interfaces from the service implementations.

Duanet al. [8, 9] present a weakest pre-condition and strongest
post-condition semantics for a subset of BPEL activities. However,
their derivation of pre- and post-conditions over concurrent threads
relies on the explicit enumeration of interleaved thread executions
and, hence, is not efficient for handling the interleaving semantics
of flow activities (pairs of fork and join), an essential feature of
BPEL processes. We address this problem by using a symbolic
fixpoint computation with disjunctive symbolic encoding.

The ability to summarize concurrent processes is fundamental to
a modular verification framework. Esparza and Podelski general-
ized the inter-procedural analysis for summarizing sequential pro-
cedures to parallel programs [10] using process algebra, in which
states are specified as terms and transitions are specified via rewrit-
ing rules. They showed that the extension of the inter-procedural
setting to parallel programs does not increase the complexity of
computing transition closures.

When concurrent executions are allowed to interfere with each
other, the pre- and post-conditions as summaries are no longer ad-
equate. To address this problem, Qadeeret al. [24] proposed a
transaction-based summarization. Each transaction is an atomic
region such that for any execution with interference, there is an ex-
ecution without interference which gives the same result. Based on
this, one can analyze each atomic region sequentially.

The main difference between our work and the earlier results on
summarization in the presence of concurrency [10, 24] is that, we
summarize message-passing processes rather than shared-memory
threads. In BPEL web services, remote processes communicate
solely by sending and receiving messages without access to any
shared variables. A process may consist of multiple local threads
that share common variables among themselves; however, threads
from the same process do not communicate with each other via
messages. Therefore, processes form a natural functional bound-
ary; summaries (pre- and post-conditions of processes) can be ex-
pressed solely in terms of the incoming and outgoing messages.

Finally, compositional reasoning for concurrent programs has
been explored in other contexts [6, 4, 27]. Cobleighet al. [6] apply
assume-guarantee reasoning in the LTSA tool to achieve composi-
tional verification. The assumption of the environment is iteratively
refined by counterexamples. In Magic [4] and Comfort [27], Chaki
et al. employ predicate and action-guided abstractions within a
counter-example guided abstraction refinement scheme. Parallel
components are abstracted by conservatively aggregating states to-
gether, and are refined later to eliminate spurious counterexamples.
Compared to those iterative refinement approaches, we perform ef-
ficient verification on concrete states by leveraging the distinction
between shared memory and message-passing structures.

3. MODELING BPEL PROCESSES
We propose concurrent process graphs (CPGs) for modeling

BPEL processes. CPGs are an extension of the standard control
flow graphs used for modeling sequential programs, with addi-
tional features added to model concurrency constructs. The CPG
representation can model both shared-variable multi-threading and
processes communicating via messages. Hence, CPGs can serve
as an intermediate representation of individual BPEL processes as



well as composite services with multiple interacting BPEL processes.

3.1 Concurrent Process Graphs

DEFINITION 1. A concurrent process graph (CPG) is a tuple
〈N, Var, Chl, E〉, such that

• N is a finite set of nodes,

• Var is a finite set of variables,

• Chl is a finite set of communication channels, and

• E ⊆ N × N × Guard× (Assign∪ Send∪ Receive∪ {−})
is a finite set of edges, where

– Guard is a set of conditional expressions over Var,

– Assign is a set of assignment statements over Var,

– Send⊆ Chl × {!} × Exp is a set of send activities,
where Exp is a set of expressions over Var,

– Receive⊆ Chl×{?}×Var is a set of receive activities.

We characterize the set of nodes and edges in a CPG below.

Node Set.
The set of nodes in a CPG is defined as the union of three disjoint

sets of nodes:N = Nn ∪ Nf ∪ Nj . A noden ∈ Nn is anormal
node, which models the sequential execution of a thread. One of
the incoming edges must be executed before control is transferred
to this node, and from this node only one of the outgoing edges can
be executed. A noden ∈ Nf is afork node, which represents the
starting point for the parallel execution of multiple threads. One of
the incoming edges must be executed before control is transferred
to this node, and from this node all the outgoing edges are executed
simultaneously in one step. Finally, a noden ∈ Nj is ajoin node,
which represents the end point for the parallel execution of multiple
threads. All incoming edges must be executed (simultaneously in
one step) before control is transferred to this node, and from this
node only one of the outgoing edges can be executed.

The two distinct sources of concurrency in a composite web ser-
vice can be modeled byfork andjoin nodes. The first one comes
from theFLOW activity inside a BPEL process, where all child ac-
tivities run concurrently. The second one comes from the concur-
rent execution of interacting BPEL processes. Although there is no
explicit BPEL language construct for the second case, this type of
concurrency can be modeled by adding a pair offork andjoin
nodes: the fork node has outgoing edges to the entry points of the
individual BPEL processes, and the join node has incoming edges
from the exit points of the individual BPEL processes.

Edge Set.
An edgee ∈ E is associated with a tuple〈n1, n2, g, α〉, where

n1 ∈ N is the source node,n2 ∈ N is the target node,g ∈ Guard
is the guard, andα ∈ Assign∪ Send∪ Receive∪ {−} is the action,
which can be anassignment (α ∈ Assign), asend (α ∈ Send), a
receive (α ∈ Receive), or ano-op (α ∈ {−}).

Let exp be an expression over variables inVar. An actionα ∈
Assignis anassignment of the formv := exp, which sets the
next state value ofv to the current value ofexp.

An actionα ∈ Sendis asend of the formch!exp, which sends
the current value ofexp as a message through the channelch. An
actionα ∈ Receiveis a receive of the form ch?v, which sets
the next-state value ofv to the value of the message received from

the channelch. A send and areceive are paired if they com-
municate through the same channel. We assume that bothsend
andreceive are blocking and the execution of the corresponding
send and receive actions are synchronous (like CSP [18]). When-
ever asynchronous communication is needed, i.e., whensend is
non-blocking andreceive is blocking, we can model it by explic-
itly adding a buffer thread to the channel. For example, a chan-
nel with arbitrary delay can be modeled by renaming the channel
of send (ch!x) and receive (ch?y) into ch1!x and ch2?y and
then adding a separate buffer thread. The buffer thread consists
of two nodesn1, n2, and two edgese1 = (n1, n2, true, ch1?z)
ande2 = (n2, n2, true, ch2!z). Between the execution ofe1 and
the execution ofe2, the buffer thread may introduce arbitrary de-
lay (when the scheduler decides to execute threads other than this
buffer thread). Note that in this example the size of the buffer is
one. One can extend the construction to a bounded size buffer by
adding more auxiliary variables to record the received messages.

The set of edges contains two types of edgesE = En∪El where
El ∩En = ∅. An edgee ∈ En is anormal edge defined as above.
An edgee ∈ El is alink edge, which imposes a “happens-before”
relation between its source and target nodes; that is, the outgoing
edges of the target node cannot be executed before the execution
of the incoming edges of the source node completes. Typically, the
source and target nodes of alink edge belong to different threads
of the same BPEL process, and the action of alink edge isno-op.
As discussed below in section 3.2,link edges are defined partic-
ularly for modeling BPEL processes. In section 3.3, we show that
one can removelink edges from a given CPG by adding auxiliary
shared variables.

3.2 Translating BPEL Processes to CPGs
A composite web service consists of a set of interacting BPEL

processes, each of which may have more than one thread. The root
of a BPEL process is identified by thePROCESSkeyword, which
contains the actual workflow defined by the top activity. A BPEL
activitycan be a basic activity or a structured activity: Basic activi-
ties areRECEIVE, REPLY, INVOKE, ASSIGN, THROW, TERMINATE,
WAIT , andEMPTY. Structured activities areSEQUENCE, SWITCH,
WHILE, PICK, FLOW, SCOPE, COMPENSATE.

Figure 2 shows a sample BPEL specification [11] (with simpli-
fied BPEL code). The entire system consists of four interacting
processes:approval, approver, assessor, andcustomer. The ap-
proval process is invoked by the customer, and invokes the assessor
and approver processes within aFLOW activity. In this FLOW ac-
tivity five threads are activated simultaneously. All processes are
executed concurrently and interact with the approval process.

The activitiesRECEIVE, REPLY, INVOKE are related to the send-
ing and receiving of messages. Specifically, aRECEIVE activity in
BPEL directly maps to a CPG receive action (ch?x) and a reply ac-
tivity (as well as an asynchronousINVOKE) in BPEL directly maps
to the CPG send action (ch!exp). A synchronousINVOKE activity
maps to a CPG send (ch!exp) which is then immediately followed
by a CPG receive (ch?x); that is, after sending a message having
the current value ofexp to invoke a remote service, it immediately
waits for the returning message inx. The ASSIGN activity maps
directly to a CPG assignment action (x := exp). TheTERMINATE,
WAIT, EMPTY activities in BPEL can also be easily modeled by
CPG nodes and edges.

The SEQUENCEactivity in BPEL represents the sequential ex-
ecution of its child activities and is modeled by nodes of normal
type. TheSWITCH, WHILE , SCOPEactivities also map directly
to corresponding structures in a standard (sequential) control flow
graph. TheFLOW activity in BPEL represents concurrent execu-



Figure 1: The CPG of theloanapproval example

l (g, α) l (g, α)
a (request.amount<4,−) 7 (true, approvalInfo.accept:=’yes’)
b (request.amount≥4,−) 8 (true, catch?error)
c (riskAssessment.risk=’low’,−) 9 (true, ch14!error)
d (riskAssessment.risk6=’low’, −) 10 (true, ch13?request)
e (true, −) 11 (true, riskAssessment.risk:=’low’)
f (true, −) 12 (true, ch31!riskAssessment)
1 (true, ch41?request) 13 (true, ch12?request)
2 (true, ch13!request) 14 (true, approvalInfo.accept:=’yes’)
3 (true, ch31?approvalInfo) 15 (true, ch24!approvalInfo)
4 (true, ch12!request) 16 (true, ch41!request)
5 (true, ch21?riskAssessment) 17 (true, ch41?approvalInfo)
6 (true, ch14!approvalInfo) 18 (true, catch?error)

Table 1: The guards and actions of the edges in Figure 1

tion of its child activities; it is mapped to a pair offork andjoin
nodes in the CPG. ThePICK activity is similar toSWITCH, except
that control may transfer to its child activities in a nondeterministic
fashion.

Now we use the example in Figure 2 to show the modeling of
BPEL concurrency constructs in CPG. The corresponding CPG is
given in Figure 1. P1, P2, P3 and P4 modelapproval, assessor,
approverandcustomerprocess, respectively. When drawing this
graph, the following notation is used:© denotes anormal node,
△ denotes afork node, and▽ denotes ajoin node. There are
up to ten concurrent executions in the CPG shown in Figure 1.
Note that inside theapprovalandcustomerprocesses, theFAULT-
HANDLER also contributes an execution thread that runs concur-
rently with the main flow of the process. The guards and actions of
labeled edges are shown in Table 1. The edges labeled from1 to 18
arenormal edges, while the edges labeled froma to f arelink
edges. The modeled BPEL statements are also labeled in Figure 2.

A partial execution order on threads within a process can be
specified byLINK attributes of theFLOW activity in BPEL. For ex-
ample,LINK a is between theRECEIVE activity and theINVOKE

activity for invoking remote process P3. The guard ofLINK a is
(request.amount ≥ 4), meaning that “theassessorprocess must

be invoked after theRECEIVE activity completes, and when the re-
quest amount is greater than or equal to 4”. As mentioned earlier,
LINK can be modeled directly as a special CPG edge.

3.3 Constraints on the CPG Representation
Before we delve into how to perform symbolic verification on

CPGs using the interleaving semantics in the next section, we im-
pose several constraints on the CPG to ease the symbolic encoding.
Note that this is done without loss of generality: If a given CPG
does not satisfy these constraints, we rewrite it into a functionally
equivalent form that satisfies the constraints.

Let 〈N, Var, Chl, E〉 be a CPG representing a BPEL process. For
an edgee = 〈n1, n2, g, α〉, we usee.src, e.tgt, e.cond, ande.act
to denote the source node, the target node, the guard, and the action
of e, respectively. The setn.Ein = {e | e ∈ E, e.tgt = n} denotes
the set of incoming edges ofn, and the setn.Eout = {e | e ∈
E, e.src = n} denotes the set of outgoing edges ofn.

We assume that the following constraints hold for alln ∈ N :

• ∀n ∈ Nf , ∀e ∈ n.Eout, we havee.cond = true and
e.act = −; otherwise, we insert a new noden3 between
e.src ande.tgt (Figure 3-left).

• ∀n ∈ Nj , ∀e ∈ n.Eout, we havee.cond = true and
e.act = −; otherwise, we insert a new noden3 between
e.src ande.tgt (Figure 3-middle).

• ∀n ∈ N , among the two setsn.Ein andn.Eout, at most one
set containslink edges, i.e.,n.Ein ∩ El = ∅ or n.Eout ∩
El = ∅; otherwise, we split the node inton1a andn1b such
thatn1a.Ein = n1.Ein andn1b.Eout = n1.Eout (Figure 3-
right).

We also remove thelink edges in a given CPG by introducing
new binary variables. For eachlink edgeea = (n1, n2, g,−) ∈
El, we allocate a new binary state variablelka. Recall thatE =
El ∪ En, whereEn is the set ofnormal edges.

• First, we addlka := 1 as an action to alle ∈ En ∩ n1.Ein.

• Second, we addg ∧ lka = 1 as a guard andlka := 0 as an
action to alle ∈ En ∩ n2.Ein.

Note thatlka is set to1 upon the completion of the source node
n1, andlka is set to0 upon the completion of the target noden2.
Furthermore, the execution of noden2 is guarded additionally by
g ∧ lka = 1. After these modifications, we remove the link edge
from the CPG. After removing alllink edges, we expand the set
of variables toVar∪ {lka | ea ∈ El}.

4. SYMBOLIC ANALYSIS OF CPGS
In this section we discuss verification of CPGs using symbolic

reachability analysis [22]. In order to encode the interleaving se-
mantics symbolically we identify the set of threads in a given CPG
and introduce one program counter variable for each thread.

Specifically, we assume that all edges are executed by a set of
concurrent threadsThread. For the purpose of tracking the thread
execution, each threadti ∈ Thread is associated with a distinct
program counter (PC) variablepci. Let P = {pci | ti ∈ Thread}
denote the set of PC variables. We assume that each noden ∈
N has a unique index, denoted asn.id. The domains of the PC
variables satisfy the following constraint:∀pc ∈ P, dom(pc) ⊆
{n.id | n ∈ N} ∪ {⊥}. If pci = n.id, then somee ∈ n.Eout will
be executed by threadti in the next step. Ifpci = ⊥ then threadti

is inactive. We assign eachn ∈ N a PC variable, denoted asn.pc,



〈processApproval〉
〈flow 〉

〈links 〉
a. 〈link name=receive-to-approval/〉
b. 〈link name=receive-to-assess/〉
c. 〈link name=setMessage-to-reply/〉
d. 〈link name=assess-to-setMessage/〉
e. 〈link name=assess-to-approval/〉
f. 〈link name=approval-to-reply/〉

〈/links 〉
1. 〈receive〉 . . .

〈sourcelinkName=receive-to-assess
transitionCondition =. . ./〉

〈sourcelinkName=receive-to-approval
transitionCondition =. . ./〉

〈/ receive〉
〈invoke 〉

2. inputVariable =. . .
3. outputVariable=. . .

〈target linkName=receive-to-approval/〉
〈target linkName=assess-to-approval/〉
〈sourcelinkName=approval-to-reply/〉

〈/invoke 〉
〈invoke 〉

4. inputVariable =. . .
5. outputVariable=. . .

〈target linkName=receive-to-assess/〉
〈sourcelinkName=assess-to-setMessage

transitionCondition =. . ./〉
〈sourcelinkName=assess-to-approval

transitionCondition =. . ./〉
〈/invoke 〉

6. 〈reply 〉 . . .
〈target linkName=setMessage-to-reply/〉
〈target linkName=approval-to-reply/〉

〈/ reply 〉
7. 〈assign〉 . . .

〈target linkName=assess-to-setMessage/〉
〈sourcelinkName=setMessage-to-reply/〉

〈/ assign〉
〈/flow 〉
〈faultHandler 〉

8. 〈catch 〉 . . . 〈/catch 〉
9. 〈reply 〉 . . . 〈/reply 〉

〈/faultHandler 〉
〈/process〉
〈processAssessor〉

〈sequence〉
10. 〈receive〉 . . . 〈/ receive〉
11. 〈assign〉 . . . 〈/ assign〉
12. 〈reply 〉 . . . 〈/ reply 〉

〈/ sequence〉
〈/process〉
〈processApprover〉

〈sequence〉
13. 〈receive〉 . . . 〈/ receive〉
14. 〈assign〉 . . . 〈/ assign〉
15. 〈reply 〉 . . . 〈/ reply 〉

〈/ sequence〉
〈/process〉
〈processCustomer〉

〈invoke 〉
16. inputVariable =. . .
17. outputVariable=. . .

〈/invoke 〉
〈faultHandler 〉

18. 〈catch 〉 . . . 〈/ catch 〉
〈/faultHandler 〉

〈/process〉

Figure 2: The loanapproval example
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Figure 3: Rewriting fork, join, and link
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Figure 4: Rewriting the link nodes

such thatn.pc = pci if and only if somee ∈ n.Eout is executed
by threadti. In this case, we say noden belongs to threadti. We
also usen.tid to denote the id of the thread thatn belongs to.

Note that the setsThread, P , andn.pc are not associated with
the original CPG. In the following section, we propose a heuristic
algorithm to discover a candidate set of threads and PC variables,
and assign a PC variable to each node.

4.1 Thread Discovery and PC Variable
Assignment

We assume that, in any CPG, thread creation and termination op-
erations (corresponding tofork andjoin) are always nested; that
is, if threadB isforked from threadA, then threadB shouldjoin
back before threadA terminates. Whenever a CPG is produced
from a BPEL process, this assumption is guaranteed to hold. The
assumption significantly simplifies the algorithm for assigning PC
variables. We can simply perform a Depth-First Search (DFS) of
the graph, and assign new PC variables only when visiting the fol-
lowing nodes: (1) entry node of a process, and (2) every successor
of afork node, except for the first one. All other nodes, including
the first successor of afork node, belong to the same thread as
their predecessor nodes. Ajoin node belongs to the thread of a
predecessor node that has the smallest thread index.

Algorithm 1 ASSIGN_PCVAR( G )
1: for each noden ∈ N do
2: n.pc = NULL;
3: n.visited = 0;
4: end for
5: numPC = 1;
6: P = {};
7: ASSIGN_PCVAR_DFS(G.entryNode );



Algorithm 2 ASSIGN_PCVAR_DFS(n1 )
1: if n1.visited == 0 then
2: n1.visited = 1;
3: if n1.pc == NULL then
4: n1.pc = numPC; // assigning a PC var
5: P = P ∪ {pcnumPC};
6: numPC = numPC +1;
7: end if
8: for eache ∈ n1.Eout do
9: n2 = e.tgt;

10: if n2 ∈ Nf then
11: if e is the first edge inn1.Eout then
12: n2.pc = n1.pc;
13: end if
14: else ifn2 ∈ Nj then
15: if n2.pc == NULL or n2.pc > n1.pc then
16: n2.pc = n1.pc;
17: end if
18: else
19: if n2.pc == NULL then
20: n2.pc = n1.pc;
21: end if
22: end if
23: ASSIGN_PCVAR_DFS(n2 );
24: end for
25: end if

The pseudo code is presented in Algorithms 1 and 2, whereAS-
SIGN_PCVAR is the entry point of the procedure. In this procedure,
numPC (which is initialized to 1) represents the total number of
PC variables (and, hence, the total number of threads) in the graph.
The auxiliary fieldn.visited is used to keep track of the visited
nodes during the DFS. We store the result of this computation, that
is, to which thread each node belongs, atn.pc. Recall that for
n ∈ N , n.pc stores the PC variablepci.

4.2 Disjunctive Transition Relation Encoding
In symbolic model checking, the model is represented as a tu-

ple 〈I, T, X〉, whereI is the symbolic representation of the initial
states andT is the symbolic representation of the transition rela-
tion. X is the set of state variables, andX ′ contains the next-state
copies of variables inX. Specifically,X = Var ∪ {lka | ea ∈
El} ∪ P ∪ {sel}, which includes BPEL variables, link variables,
PC variables, and an auxiliary variablesel that we later use to
model the interleaving semantics explicitly. Assume that the CPG
has a unique entry noden1 ∈ N , thenI is defined as(n1.pc =
n1.id) ∧

V
pci 6=n1.pc(pci = ⊥). In the initial state, all the yet-to-

be-created threads have a PC value⊥. Furthermore, after a thread
terminates through execution of ajoin edge, its PC value becomes
⊥ again. The interleaving semantics is imposed by using a non-
deterministic scheduler variable calledsel, whose domain is the
set of thread indices in the CPG. An edgee ∈ E, whose source
node belongs to threadti (e.src.pc = pci), is executed only when
(sel = i). Also note that when an edgee ∈ E is executed, state
variables that are not assigned new values on this edge must re-
tain their current values. According to the synchronous communi-
cation semantics, we model the synchronous execution ofch!exp
and ch?x as if there is an assignmentx′ := exp (the next-state
value ofx is current value ofexp) added toT . This assignment
(synchronous execution of send and receive) happens only when
both threads are ready to communicate—when the PC of the send
thread is at the source node of the send edge and the PC of the re-

ceive thread is at the source node of the receive edge. If one thread
is ready for a sendch!exp but the other thread is not yet ready for
the corresponding receivech?x (or vice versa), no transition from
these two threads will be executed since there is no corresponding
transition formula inT .

In the sequel, we usee.XW to denote the set of state variables
being written to by an edgee. When an actione.act is an
assignment, e.g.,v := exp, variablev belongs toe.XW . When
e.act is areceive, e.g.,ch?x, variablex belongs toe.XW .

Now we present the algorithm for building the disjunctive tran-
sition relationT . Let T =

W
e∈E Te whereTe is the transition

relation for an individual edgee ∈ E. We start by iterating through
the setE of CPG edges. The pseudo code of this procedure is given
in Algorithm 3. HereEvisited ⊆ E denotes the set of already vis-
ited edges. For each edgee ∈ E, we useXvisited ⊆ X to denote
the set of state variables that are assigned, either explicitly through
actions or implicitly through control flow transition. We do not add
a transition formula toT for send edges – these formulae are added
when processing the corresponding receive edges.

Algorithm 3 ENCODE_INTERLEAVING( G )
1: T := false;
2: Evisited := { };
3: for each edgee : (n1, n2, g, α) in (E \ Evisited) do
4: Evisited := Evisited ∪ {e};
5: Xvisited := {n2.pc} ∪ e.XW ;
6: Ts := (sel = n1.tid);
7: Te := (n1.pc = n1.id ∧ g ∧ n2.pc′ = n2.id);
8: if n1 ∈ Nf then
9: for each edgee1 ∈ n1.Eout, e1 6= e do

10: Evisited := Evisited ∪ {e1};
11: Xvisited := Xvisited ∪ {e1.tgt.pc};
12: Te := Te ∧ e1.tgt.pc′ = e1.tgt.id;
13: end for
14: else ifn2 ∈ Nj then
15: for each edgee2 ∈ n2.Ein, e2 6= e do
16: Evisited := Evisited ∪ {e2};
17: Xvisited := Xvisited ∪ {e2.src.pc};
18: Te := Te ∧ e2.src.pc = e2.src.id ∧ e2.src.pc′ = ⊥;
19: end for
20: end if
21: if α is assignmentv := exp then
22: Te := Te ∧ v′ = exp;
23: else ifα is receivech?x then
24: if ∃e3 ∈ E, e3.act = ch!exp then
25: Evisited := Evisited ∪ {e3};
26: Xvisited := Xvisited ∪ {e3.tgt.pc};
27: Te := Te ∧ x′ = exp;
28: Te := Te ∧ e3.src.pc = e3.src.id ∧ e3.tgt.pc′ =

e3.tgt.id;
29: else
30: Te := Te ∧ x′ = ∗;
31: end if
32: else ifα is sendch!exp then
33: continue
34: end if
35: Te := Te ∧ Σv∈(X\Xvisited)v

′ = v;
36: T := T ∨ Ts ∧ Te;
37: end for
38: return T ;

As an example, the result of applying the Algorithm 3 to part of
the CPG in Figure 1 is shown in Figure 5.
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Figure 5: Encoding of the interleaving semantics for the sample CPG

4.3 Monolithic Symbolic Verification
For a BPEL process without any external service invocation, we

can model the process as a CPG, build a monolithic symbolic repre-
sentation and check its correctness by symbolic reachability analy-
sis. For a composite web service in which a BPEL process invokes
a set of externally defined BPEL processes, we can build a single
CPG that includes all participating BPEL processes by adding a
newentry nodewhich is afork, with outgoing edges to the entry
nodes of all participating processes; at the same time, adding a new
exit nodewhich is ajoin, with incoming edges from the exit nodes
of all participating processes. In the monolithic verification model,
all the variables are treated as global variables and the model is
treated as a closed system.

Given such a verification model, we can apply the standard sym-
bolic fixpoint algorithm in model checking [22] for reachability
analysis. LetR be the set of reachable states fromI in the model;
we start withR = I, and repeatedly computeR ∪ post(T, R),
wherepost(T, R) is the set of successor states ofR. post(T, R)
is defined as(∃X.R(X)∧T (X, X ′))[X/X ′], where∃X. denotes
existential quantification onX, and[X/X ′] denotes renamingX ′

with X. Maintaining the entire reachable state setRi at every it-
erationi is costly. However, to detect convergence of this fixpoint
computation, the algorithm needs to store the already reached states
(in order to stop as soon asRi+1 = Ri). Let Ri−1 andRi be two
reachable state sets at two consecutive steps; the setRi \ Ri−1 is
called thefrontier set[26]. In computingRi+1, post(T, Ri\Ri−1)
can be used instead ofpost(T, Ri) to speed up the computation, if
the set(Ri \ Ri−1) has a smaller symbolic representation.

In this paper, we apply a specialized symbolic search strategy
called REACH_FRONTIER to improve reachability fixpoint com-
putation [29]. It uses an augmentedfrontier setto detect conver-
gence. In reachability computation, a frontier set consists of all the
new states reached at the previous iteration; that is,F 0 = I, F i =
post(T, F i−1)\F i−1. When the CPG is an acyclic graph, fixpoint
computation can stop whenF i becomes empty. In the presence
of cycles, we can identify a set of back edgesEback ⊆ E in the
CPG, whose removal will make the graph acyclic. LetSback =W

e∈Eback
(e.src.pc = e.src.id) denote the state subspace asso-

ciated with source nodes of the back edges. The set of already
reached states that falls insideSback is S = R ∩ Sback; the empti-
ness of the set(F \ R ∩ Sback) can be used to detect convergence.

We identify back edges in the CPG by a DFS starting from the
entry node. If the CPG is acyclic, the post-order of DFS gives
a topological order and all edges are from lower ranked nodes to
higher ranked nodes. If the CPG has cycles,Eback is identified as
the set of edges from higher ranked nodes to lower ranked nodes
(w.r.t. the post-order of the DFS) and we label them as back edges.
The removal of these edges makes the CPG a directed acyclic graph.

Our new reachability procedure in Algorithm 4 takes as para-
meters the state subspaceErr (the error states) as well asSback

associated with tail blocks of back edgesEback. We use the set
S to represent the subset of already reached states that fall inside
Sback. The procedure terminates whenever the standard fixpoint
procedure terminates. The procedure returnsfalse if a violation is
found, i.e., there exists somes ∈ Err that is reachable; the proce-
dure returnstrue if it is proven that no violation exists. In the later
case, we say a proof is found.

Algorithm 4 REACH_FRONTIER(T ,I ,Err,Sback)
1: F = I;
2: S = I ∩ Sback;
3: while F 6= ∅ do
4: if (F ∩ Err) 6= ∅ then
5: return false;
6: end if
7: F = (post(T, F ) \ F ) \ S;
8: S = S ∪ (F ∩ Sback);
9: end while

10: return true;

The symbolic analysis presented in this section is well suited for
analyzing individual BPEL processes, for which the CPG sizes are
often small. When applied to a composite web service, however,
such a monolithic verification method often suffers from the well-
known state space explosion problem, similar to the prior meth-
ods using automata product construction. In the next section, we
present a modular verification method, which analyzes BPEL
processes individually to compute their summaries before compos-
ing them together to verify the entire system.



5. MODULAR VERIFICATION OF WEB
SERVICE COMPOSITION

We summarize both the safe invoking context and the behavior
of a process in terms of its incoming and outgoing messages. The
safe invoking context (pre-condition) is computed using a back-
ward symbolic analysis starting from the setErr of error states,
followed by projecting the result to theincoming messages. The
behavior of a process (post-condition) is computed using a forward
symbolic analysis starting from the initial states, followed by pro-
jecting the result to the set ofincoming messagesandoutgoing mes-
sages. Assume that in a composite web service, the main process is
interacting with some external processes. We shall show that, un-
der certain conditions, by composing the summaries of the external
processes, the reachability analysis of the main process itself is as
precise as the monolithic analysis of the entire system.

We focus on checking safety properties, e.g., no violation of as-
sertions in the BPEL source code. A process issafeif no assertion
violation occurs during its execution (including all the embedded
service invocations). A process invocation is safe if no assertion
violation occurs during the execution of the invoked process.

For the following analysis, we assume that there is a unique pair
of send and receive edges for each channel. This constraint implies
that each message can only be written by one process once. If
a channel is shared by multiple pairs of send and receive edges,
we rewrite by creating multiple copies of the channel. (The above
constraint may not be satisfied by some types of BPEL processes in
practice; we discuss this limitation in Sec 5.3.) Consider a process
modeled by a CPG〈N, Var, Chl, E〉. Fore ∈ E, if e.act = ch!exp
or e.act = ch?v, we usee.ch to denotech. With eachch ∈ Chl,
we associate a messagemsgch. Mout = {msge.ch | e ∈ Send}
denotes the set of outgoing messages of the process, andMin =
{msge.ch | e ∈ Receive} denotes the set of incoming messages of
the process.

For a processP , we useP.Pre to represent its safe invoking
context, which is a constraint over the variables inMin. P.Pre is
the condition under which invokingP is guaranteed not to cause
assertion failure insideP . We useP.Postto represent the expected
outcome of executing processP . P.Post is the precise relation of
the variables inMin and the variables inMout. The summary of an
individual processP is defined as a tuple〈Min, Mout, Pre, Post〉.

In the following sections, we shall show how to compute the
summary of an individual process. Note that the summary of each
process is computed separately, without the consideration of (the
summaries of) other processes; that is, when computing the invoker
process, we do not need the summaries of the invoked processes.
Later, we shall show how to compose the summaries of all the in-
volved processes in analyzing the entire system. Finally, we would
like to point out that the assertions may appear in any of the in-
volved processes; it does not affect the order in which processes
are summarized. We shall explain that, by conducting a local analy-
sis of the main process using the summaries of the other involved
processes, we can detect assertion violations in any of the involved
process, and the verification result is as precise as a monolithic
analysis of the entire system.

5.1 Computing Process Summaries
Both P.Pre andP.Postare computed using process-local sym-

bolic fixed point computations. A local transition system〈I, T, X〉
for processP is constructed as follows.X = Min ∪ Mout ∪ Xm

is the set of state variables, whereXm is the set of state variables
that we have defined for a monolithic analysis ofP . The transition
relation T is computed by Algorithm 3 with slight changes: (1)
read incoming messages (replace line 30 withTe := Te ∧ x′ =

msgch), and (2) write outgoing messages (replace line 33 with
Te := Te ∧ msg′

ch = exp ). Note that a process-local transi-
tion system does not inline the invoker/invoked processes or their
summaries.

We defineP.Pre as the conjunction of a set ofsafeconstraints
over (the incoming messages of) the receive edges inP :^

e∈Receive

∃Mout.∃Xm.(Spre ∧ e.src.pc = e.src.id),

whereSpre∧e.src.pc = e.src.id is the set of safe states associated
with the source node of a receive edge.

Algorithm 5 computesSpre as a greatest fixed point via a back-
ward analysis starting from the setErr of error states inP . Spre

is the weakest pre-condition of the set of local assertion condi-
tions. In the pseudo code, we useStmp to represent the set of
states that can reachErr. Srec =

W
n∈N (n.pc = n.id), where

N = {e.src | e ∈ Receive}, is the state subspace associated with
the set of source nodes of receive edges.pre(T, S) implements the
computation of pre-condition ofS with respect to the transition re-
lationT . The algorithm iteratively cuts states that may lead toErr
until a fixed point is reached.

Algorithm 5 REACH_PRE(T ,Err,Srec)
1: Stmp := Err;
2: Spre := true \ (Stmp ∩ Srec);
3: S′

tmp := pre(T, Stmp);
4: while S′

tmp \ Stmp 6= ∅ do
5: Spre := Spre \ (S′

tmp ∩ Srec);
6: Stmp := S′

tmp;
7: S′

tmp := pre(T, Stmp);
8: end while

We defineP.Postas the relation of all the outgoing messages in
Mout and all the incoming messages inMin. Since the incom-
ing messages to processP do not change insideP , we can com-
puteP.Postby conjoining the relations between individual outgo-
ing messages and all the incoming messages as follows:^
e∈Send

∃Mout \ {msge.ch}.∃Xm.(Spost ∧ e.tgt.pc = e.tgt.id),

whereSpost ∧ e.tgt.pc = e.tgt.id is the set of reachable states as-
sociated with the target node of a send edge. Algorithm 6 computes
Spost as a least fixed point via a forward analysis.Spost is the set
of states reachable from the intersection set of initial statesI and
Spre.

In the pseudo code, we useSsend =
W

n∈N
(n.pc = n.id),

whereN = {e.tgt | e ∈ Send}, to denote the state subspace as-
sociated with the target nodes of send edges. SinceSpre depends
solely on the incoming messages inMin (which do not change in-
sideP ), the result can be computed by conjoiningSpre with the
reachable states fromI at the end (line 9).

5.2 Composing Process Summaries
Now we describe how to utilize process summaries to achieve

modular verification of the entire system. Consider a system of
multiple interacting processes, each of which may contain some
assertion checks; our modular analysis proceeds as follows: (1) we
arbitrarily pick a processP , and for the remaining processes, we
perform the process-local summarization as described in the pre-
vious section; (2) after computing the summaries of all processes
exceptP , we derive ajoint summary; and (3) when building the
process-local transition relation for processP , we impose thejoint
summaryas a set of additional constraints (to be described in the



Algorithm 6 REACH_POST(T ,I ,Ssend, Spre)

1: Stmp := I;
2: Spost := Stmp ∩ Ssend;
3: S′

tmp := post(T, Stmp);
4: while S′

tmp \ Stmp 6= ∅ do
5: Spost := Spost ∪ (S′

tmp ∩ Ssend);
6: Stmp := S′

tmp;
7: S′

tmp := post(T, Stmp);
8: end while
9: Spost := Spost ∩ Spre;

remainder of this section). A joint summary of a set of processes is
defined as〈MIN , MOUT , PRE, POST〉, whereMIN =

S
P P.Min,

MOUT =
S

P P.Mout, PRE=
V

P P.Pre, POST=
V

P P.Post.
The transition system〈I, T, X〉 of processP , which utilizes the

summary〈MIN , MOUT , PRE, POST〉, is constructed as follows.
X = MIN ∪ MOUT ∪ Xm, whereXm is the set of process-local
state variables.T is constructed as in Algorithm 3 but the segment
from line 21 to 34 is replaced with the segment from line 1 to 20
in Algorithm 7. When building the transition relation of processP ,
each process invocation is treated as if it is a single transition step.

Algorithm 7 COMPOSE_SUMMARY_PATCH( G )
1: if α is assignmentv := exp then
2: Te := Te ∧ v′ = exp;
3: else ifα is receivech?x then
4: if ∃e3 ∈ E, e3.act = ch!exp then
5: Evisited := Evisited ∪ {e3};
6: Xvisited := Xvisited ∪ {e3.tgt.pc};
7: Te := Te ∧ x′ = exp;
8: Te := Te ∧ e3.src.pc = e3.src.id ∧ e3.tgt.pc′ =

e3.tgt.id;
9: else ifmsgch ∈ MOUT then

10: Te := Te ∧ x′ = msgch ∧ POST;
11: else
12: Te := Te ∧ x′ = ∗;
13: end if
14: else ifα is sendch!exp then
15: if msgch ∈ MIN then
16: Xvisited := Xvisited ∪ msgch;
17: msg′

ch = exp;
18: Assert (e.tgt.pc = e.tgt.id ∧ PRE);
19: end if
20: end if

At line 10 in Algorithm 7, we impose the constraint (overmsgch)
derived from the invoked process. The encoding ensures that the
value ofx after ch?x is properly defined. At line 18, we add the
assertion to ensure that interaction with the external process is safe.
If the assertion is not satisfied, it means that an assertion is vio-
lated by the external process. For messages that do not correspond
to any processes that has been summarized (e.g., due to missing
BPEL source code), we adopt a conservative encoding to allow all
possible values, i.e., at line 12, the value ofx in ch?x becomes
nondeterministic.

EXAMPLE 1. Consider the two processes in Figure 6, where
PA invokesPB and there is an assertion insidePA: assert(y =
1) at n4. The corresponding CPGs are given in Figure 6. There are
two different ways of applying our modular analysis method. For
the purpose of checking assertion violation, our analysis remains
sound and complete in both cases.

Figure 6: An example for process summary and composition

Case 1:We summarize processPB first, and then verify process
PA by composing the summary ofPB . The summary ofPB is
〈{msgch1}, {msgch2}, true, Post}〉, wherePB .Postis

(msgch1 > 0 ∧ msgch2 = +1)∨
(msgch1 = 0 ∧ msgch2 = 0)∨
(msgch1 < 0 ∧ msgch2 = −1)

Note thatPB .Post is the precise relation between the incoming
messages and the outgoing messages. After composing the sum-
mary ofPB , the transition relation of processPA is

n0 → n1 : (pc = 0 ∧ pc′ = 1) ∧ (x′ = 1)
n1 → n2 : (pc = 1 ∧ pc′ = 2) ∧ (msg′

ch1 = x)
n2 → n3 : (pc = 2 ∧ pc′ = 3) ∧ (x′ = x − 1)

∧(msg′
ch1 = msgch1)

n3 → n4 : (pc = 3 ∧ pc′ = 4) ∧ (y′ = msgch2 ∧ PB .Post)
...

One can verify that whenpc = 4, the assertion condition(y = 1)
always holds.

Case 2:Alternatively, we can summarize processPA, and then
verify processPB by composing the summary ofPA. The sum-
mary of PA is 〈{msgch2}, {msgch1} , msgch2 6= 1, msgch1 =
1}〉. The transition relation of processPB is

n0 → n1 : (pc = 0 ∧ pc′ = 1) ∧ (a′ = msgch1)
∧(msgch1 = 1)

n6 → n7 : (pc = 6 ∧ pc′ = 7) ∧ (msg′
ch2 = b)

...

While composing the summary ofPA, we shall add an assertion
to PB at noden7; that is,assert(msgch2 6= 1) at n7. One can
verify that whenpc1 = 7, the condition(msgch2 6= 1) always
holds, meaning that there is no assertion violation insidePA.

5.3 Modularity of Message-passing Processes
Given a transition system〈I, T, X〉, whereT is in disjunctive

form, we sayx ∈ X is a symbolic constantif x′ = x holds for
all disjunctive transitions inT . When we conduct a process-local
analysis ofP , the incoming messages toP are symbolic constants.
(P may change its local copies, but not the incoming messages
themselves.) Let us prove that, in Algorithm 6, we can compute the
set of states reachable fromI ∧ Spre precisely, by conjoiningSpre

at the end of the reachability analysis (line 9).
LetC = {x | x ∈ X, x is a symbolic constant} andI(X) denote

a constraint over variables inX. By definition,T (X, X ′) is equal
to T ′(C, Y, Y ′) ∧ C′ = C, whereY = X \ C andT ′ = ∃C′.T .



We have the following property:

post∗(T, I(C) ∧ I(X)) ≡ I(C) ∧ post∗(T, I(X)).

This property states that, as long as variables inC are symbolic
constants, one can precisely compute the fixed point of reachable
states formI(C)∧ I(X) by simply conjoiningI(C) with the fixed
point of reachable states fromI(X). Note that for a BPEL process,
the reachable states fromI(X) can be calculated in advance, and
serve as a summary.

We prove the property as follows:

post(T, I(C) ∧ I(X))
≡ (∃X.I(C) ∧ I(X) ∧ T (X, X ′))[X/X ′]
≡ (∃Y.∃C.I(C) ∧ I(C, Y ) ∧ T (C, Y, C′, Y ′))[C/C′][Y/Y ′]
≡ (∃Y.((∃C.(I(C) ∧ I(C, Y ) ∧ T ′(C, Y, Y ′) ∧ C′ = C))

[C/C′]))[Y/Y ′]
≡ (∃Y.((I(C′) ∧ I(C′, Y ) ∧ T ′(C′, Y, Y ′))[C/C′]))[Y/Y ′]
≡ (∃Y.(I(C) ∧ I(C, Y ) ∧ T ′(C, Y, Y ′)))[Y/Y ′]
≡ I(C) ∧ ((∃Y.I(C, Y ) ∧ T ′(C, Y, Y ′))[Y/Y ′])
≡ I(C) ∧ ((∃Y.((∃C.I(C, Y ) ∧ T ′(C, Y, Y ′) ∧ C′ = C)

[C/C′]))[Y/Y ′])
≡ I(C) ∧ (∃Y.∃C.I(C, Y ) ∧ T (C, Y, C′, Y ′))[C/C′][Y/Y ′]
≡ I(C) ∧ (∃X.I(X) ∧ T (X, X ′))[X/X ′]
≡ I(C) ∧ post(T, I(X))

By induction on the iterations ofpost function, we have:

post∗(T, I(C) ∧ I(X)) ≡ I(C) ∧ post∗(T, I(X)).

Consider that a processPA sends a messagemsg1 to process
PB , andPA receives a messagemsg2 as the reply. To analyzePA,
one needs to know the values ofmsg2 w.r.t. msg1. This is obtained
by computingpost∗(TB , I(msg1)∧IB), whereTB is the process-
local transition relation andIB is the initial states ofPB . Since
msg1 is never modified byPB , according to the property described
above, one can computeI(msg1)∧post∗(TB , IB) instead of com-
putingpost∗(TB , I(msg1)∧ IB). In this case,post∗(TB , IB) can
be computed separately without any information aboutPA. During
the analysis ofPA, we simply conjoinI(msg1) with the summary
of PB . This is done implicitly in Algorithm 7 (line 10).

Since we assume that there is a unique send and receive pair for
each channel, the value of each message is preserved after it is writ-
ten. As long as the fixed point of reachable states is computed pre-
cisely in Algorithm 5 and 6 (no widening is involved),PREis the
most permissive environment assumption of summarized processes
andPOSTis the precise summary of the relation betweenMIN and
MOUT .

Finally, for BPEL processes having multiple sends and receives
on the same channel, we have to explicitly enumerate the possible
ways of pairing up one send and one receive and assign each pair
a unique channel. When a naive algorithm is used, in the worst
case, we will end up creating too many possible CPGs. This is a
limitation of our CPG based symbolic analysis. Furthermore, if a
send/receive activity is within a loop, we need to unwind the loop
fully before applying the CPG based analysis.

In this paper, we perform composite model checking [3, 29, 30]
on systems having unbounded integers. In the integer domain, the
precise fixed point of reachable states is not always computable.
Although we can compute the precise reachable states in most of
the practical examples, there are cases where the fixed point com-
putation may not converge. In such cases, we may apply approxi-
mation techniques such as widening [7] to enforce convergence and
get a conservative summary.

6. EXPERIMENTS

We developed a prototype tool that implements the techniques
proposed in this paper. The tool consists of three major compo-
nents: (1) Translator for BPEL+WSDL to CPG, (2) Composite
Symbolic Model Checker, (3) Summarizer/Modular Verifier.

We first parse BPEL and WSDL documents and extract neces-
sary control and data flow information. Then we construct the cor-
responding concurrent process graph (CPG). Depending on type of
verification used (monolithicor modularverification) we build the
symbolic transition relations for the processes. After constructing
the symbolic encoding, we employ a symbolic model checker for
reachability analysis. We use a composite symbolic representation
with an underlying symbolic library [3] that is able to handle mod-
els with both boolean and unbounded integer variables. The com-
posite symbolic representation is used for symbolic model check-
ing with state sets represented over Binary Decision Diagrams and
Polyhedra over linear constraints [30, 29].

In monolithic model checking, all BPEL processes are put into a
single CPG, and then the symbolic reachability analysis is applied
to the resulting symbolic transition system. In modular verification,
we first compute summaries of the processes. While analyzing a
process, we compose its transition system with the summaries of
the other processes and then use symbolic reachability analysis.

We conducted experiments on two public benchmarks: loan ap-
proval and travel agency. The results are shown in Table 2 and Ta-
ble 3, respectively. The second column shows the result of mono-
lithic analysis. Columns 3-6 shows the results of analyzing each
individual process in modular analysis. In the result row,P indi-
cates that a proof is found and assertions are not violated, whileNA
indicates that the analysis is not able to terminate.Sindicates that a
summary is generated. The CPU time is given in seconds (s). The
memory usage is given in mega bytes (MB). The ITRs row shows
the number of iterations of the fixpoint computation.

In the monolithic analysis ofloan approval, the reachable states
of all concurrent processes converged at the32-th iteration of the
fixpoint computation, and a proof that none of the assertions are
violated was found. In the modular analysis, we summarize as-
sessor, approver, and customer processes before analyzing the root
process, approval. Although there is some overhead in summariz-
ing the first three processes, by applying these summaries to the
root process, we were able to reduce the runtime by90% (from
1227.2 seconds to 124.5 seconds) and reduce the memory usage by
40% (from 810 MB to 490 MB).

In the monolithic analysis oftravel agency, the computation ran
out of memory at the57-th fixpoint iteration. Neither a proof nor
a violation was found. In the modular analysis, we successfully
proved the correctness of root process (VTA) by first summarizing
processes hotel, flight, and user. Compared to the monolithic analy-
sis, modular verification of VTA took only fraction of the effort re-
quired for the (incomplete) monolithic analysis (99.96% reduction
in time and78% reduction in memory).

Our experimental results on these two BPEL specifications show
that our modular verification method outperforms the conventional
monolithic verification technique both in terms of execution time
and memory usage, resulting in a more scalable verification ap-
proach.

7. CONCLUSION
We have proposed a modular verification method for compos-

ite web services written in BPEL. Our approach is based on an
efficient symbolic encoding to model the interleaving semantics
of BPEL processes, which includes both shared variable multi-
threading within a process and synchronous/asynchronous message



Monolithic Modular Verification
Verification Approval Assessor Approver Customer

Result P P S S S
Time (s) 1227.2 124.5 0.1 0.1 0.1

Memory (MB) 810 490 289 290 290
ITRs 32 16 10 10 5

Table 2: Analyzing the loan approval benchmark.

Monolithic Modular Verification
Verification VTA Hotel Flight User

Result NA P S S S
Time (s) 18947 814 13.5 13.4 34.6

Memory (MB) 1663 363 273 363 284
ITRs 57 55 23 22 30

Table 3: Analyzing the travel agency benchmark.

passing among processes. We present a novel method for analyz-
ing and summarizing concurrently running processes, together with
a modular verification framework that utilizes the summaries for
scalable verification of the entire system.
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