
ConTesa: Directed Test Suite Augmentation
for Concurrent Software

Tingting Yu ,Member, IEEE, Zunchen Huang , and Chao Wang,Member, IEEE

Abstract—As software evolves, test suite augmentation techniques may be used to identify which part of the program needs to be

tested due to code changes and how to generate these new test cases for regression testing. However, existing techniques focus

exclusively on sequential software, without considering concurrent software in which multiple threads may interleave with each other

during the execution and thus lead to a combinatorial explosion. To fill the gap, we propose ConTesa, the first test suite augmentation

tool for concurrent software. The goal is to generate new test cases capable of exercising both code changes and the thread

interleavings affected by these code changes. At the center of ConTesa is a two-pronged approach. First, it judiciously reuses the

current test inputs while amplifying their interleaving coverage using random thread schedules. Then, it leverages an incremental

symbolic execution technique to generate more test inputs and interleavings, to cover the new concurrency-related program behaviors.

We have implemented ConTesa and evaluated it on a set of real-world multithreaded Linux applications. Our results show that it can

achieve a significantly high interleaving coverage and reveal more bugs than state-of-the-art testing techniques.

Index Terms—Regression testing, concurrent programming, symbolic execution, dynamic analysis

Ç

1 INTRODUCTION

REGRESSION testing is a widely-used technique to re-
validate evolving software. Typically, engineers begin by

executing the existing test cases, to which various techniques
for test selection [1], [2], [3], [4], [5] and test case prioritization [6],
[7], [8], [9], [10], [11], [12] may be used, to reduce the testing
cost. However, existing test cases may not be sufficient for
covering the new or modified software code and related pro-
gram behaviors. To address this problem, regression test suite
augmentation (RTA) is used to identify where new test cases
are needed and then create these test cases [13], [14], [15], [16].
However, prior work on RTA focuses exclusively on sequen-
tial software; it does not consider issues related to thread inter-
leavings or have the ability to effectively cover concurrency-
related newprogrambehaviors.

Unlike sequential software, forwhich RTAhas to consider
the addition of test inputs only, concurrent software requires
RTA to generate both test inputs and thread interleavings so
as to cover the new concurrency behaviors of the modified
code. This is often difficult because in real-world applica-
tions, the thread interleaving space may be too large to
explore exhaustively [17]. Although there is a large body of
work on mitigating this interleaving explosion problem,
including techniques based on static analysis [18], [19], [20],
[21], [22], [23], systematic exploration [24], [25], [26], [27],

[28], [29], [30], and schedule generation [31], [32], they all tar-
get a single program version and thus do not directly benefit
RTA. In RTA, one must consider two closely-related pro-
gram versions. Terragni et al. [33] have proposed a technique
in the context of regression testing for exploring alternative
thread interleavings pertinent to the affected shared-variable
(SV) accesses, and showed that only 1 percent of SV accesses
in real applications are affected. However, their technique
relies exclusively on the existing test inputs; it cannot gener-
ate new test inputs.

In this paper, we present ConTesa, the first RTA technique
for concurrent software to simultaneously generate new test
inputs and thread interleaving schedules. To leverage the
existing test inputs while minimizing the cost of generating
new test inputs, ConTesa uses a two-pronged approach. In
the first phase, ConTesa takes the two program versions P
and P 0 and computes a set ISD of interleaving schedules that
need to be covered. To compute these coverage targets, we
consider the global operations (e.g., shared-variable accesses
and synchronizations) affected by code changes and select
interleavings to cover each of them at least once. Since
exhaustively covering all interleavings is practically infeasi-
ble, we use a modest coverage criterion: the set of selected
interleavings must be able to cover a predefined set of inter-
thread definition-use (DU) access patterns.

In the second phase, ConTesa generates new test inputs to
activate the predefined set of DU pairs. Prior to doing that,
however, ConTesa utilizes the existing test inputs together
with random schedules to quickly trim down the coverage
targets in ISD. Thus, new test inputs are generated only for
coverage targets that cannot be reached by existing test
inputs. For each coverage target left in ISD, i.e., a DU pair,
ConTesa uses an SMT solver-based symbolic execution pro-
cedure to compute the new test input, as well as the thread

� T. Yu and Z. Huang are with the Department of Computer Science,
University of Kentucky, Lexington, KY 40506.
E-mail: tyu@cs.uky.edu, zunchen.h@uky.edu.

� C. Wang is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90089. E-mail: wang626@usc.edu.

Manuscript received 4 Oct. 2017; revised 6 June 2018; accepted 23 July 2018.
Date of publication 31 July 2018; date of current version 16 Apr. 2020.
(Corresponding author: Tingting Yu.)
Recommended for acceptance by T. Bultan.
Digital Object Identifier no. 10.1109/TSE.2018.2861392

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020 405

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-5837-9960
https://orcid.org/0000-0002-5837-9960
https://orcid.org/0000-0002-5837-9960
https://orcid.org/0000-0002-5837-9960
https://orcid.org/0000-0002-5837-9960
mailto:
mailto:
mailto:

schedule under which the coverage of program version P 0

can be increased. This iterative process of generating new
test inputs and thread schedules repeats until the entire set
ISD is covered or a predefined time limit is reached.

To evaluate ConTesa, we conducted experiments on the
regression testing of 13 real-world C/C++ applications,
including four large programs with 95 to 154 K lines of code.
We compare ConTesa with three state-of-the-art techniques
for testing multithreaded software. The first technique is
Conc-ise [34], an incremental symbolic execution tool for
exploring the affected interleaving space. Conc-ise does not
reuse existing test cases to guide the exploration; in contrast,
it generates all test inputs and thread interleavings from
scratch. The second technique is Con2colic[35], a technique
for systematically generating test inputs and thread sched-
ules via symbolic execution of the new program version. The
third technique is ReConTest [33], a regression testing tool
that explores the interleaving space using only existing test
inputs. More details on comparing ConTesa to these three
baseline techniques are discussed in Section 2.3.

Our results show ConTesa outperforms all three techni-
ques in terms of the test coverage, fault detection rate, and
testing time. Specifically, compared to the first approach,
ConTesa detected 18.1 percent more faults, improved the
coverage by 4.5 percent, and was up to 1.9 times faster; com-
pared to the second approach, ConTesa detected 44.4 percent
more faults, improved the coverage by 4.9 percent, and was
up to 39.3 times faster; compared to the third approach,
ConTesa was three times slower but detected 85.7 percent
more faults and improved the coverage by 52.5 percent.

One key benefit of ConTesa is the reuse of existing test
inputs together with random schedules. This is because
existing test cases provide a rich source of data on potential
inputs and code reachability, which can speed up the explo-
ration of the affected program space. Compared to the three
baseline approaches, ConTesa performs better especially on
larger programs. Moreover, existing test cases are naturally
available as a starting point in the regression testing context.
There are dynamic analysis techniques for detecting concur-
rency faults that utilize existing test cases, which can be
combined with ConTesa to further improve fault detection
effectiveness.

In summary, this papermakes the following contributions:

� We propose the first regression test augmentation
tool for concurrent software, capable of utilizing
existing test cases as well as generating new test
cases (inputs and thread schedules).

� We conduct controlled experiments on real applica-
tions to evaluate different input and interleaving
generation strategies and demonstrate the effective-
ness of the proposed technique.

In the remainder of this paper, we first introduce the tech-
nical background and problem statement together with a
motivating example in Section 2. Then, we present the over-
all algorithm of ConTesa in Section 3, followed by detailed
descriptions of the test augmentation algorithm in Section 4.
We present the empirical study and results in Sections 5 and
6, respectively, followed by a discussion of our observations
in Section 7.We present the relatedwork in Section 8. Finally,
we give our conclusions in Section 9.

2 BACKGROUND AND MOTIVATION

We first define the test suite augmentation problem and then
illustrate the technical challenges in the context of concur-
rent software using a motivating example.

2.1 Test Suite Augmentation

Let P be a program, P 0 be a modified version of P , T be the
existing test suite1 for P , and T 0 be the new test suite for P 0.
Our goal is to compute T 0 when given P , P 0, and T .

In regression testing, engineers often begin by reusing T .
Since reusing all test cases (i.e., the retest-all approach) is expen-
sive, regression test selection (RTS) attempts to select, from T , a
subset T 0 � T of test cases that are important, while omitting
test cases that are not as important [1], [2], [3], [4], [5]. Simi-
larly, regression test prioritization (RTP) attempts to reorder the
existing test cases in T with the goal of more quickly reaching
the testing objectives. The most obvious testing objective is
revealing the faults [6], [7], [8], [9], [10], [11], [12].

Clearly, both RTS and RTP are concerned with the reuse
of test cases in T . In contrast, regression test augmentation,
which is the focus of this paper, is concerned with 1) identi-
fying the affected entities in the software code (e.g., portions
of P 0 or its specification for which new test cases are
needed), 2) checking whether existing test suites are ade-
quate for covering the affected entities , and 3) creating new
test cases to exercise these affected but not-yet-covered enti-
ties [13], [14], [15], [16].

At the center of RTS, RTP, as well as RTA is a static pro-
gram analysis named change-impact analysis (CIA). It is used
to analyze the program models (e.g., control-flow graphs) of
both P and P 0 and determine the code changes as well as
program entities affected by these code changes. Thus, CIA
serves as a foundation for performing the various steps of
regression testing. In principle, only program entities that
are involved in the code changes or affected by these
changes need to be re-tested.

2.2 A Motivating Example

Weuse the concurrent program in Fig. 1 to illustrate themain
challenges in RTA. The program is a simplified and slightly
modified version of the code snippet from Aget,2 a multi-
threaded HTTP download accelerator.. The program has
two threads Thr1 and Thr2 as well as global variables x, y,
and z. Both the original program P and the modified

Fig. 1. A program with deleted (“–”) and added (“++”) lines.

1. A test suite is a collection of test inputs.
2. http://www.enderunix.org/aget

406 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

http://www.enderunix.org/aget

program P 0 are shown in the figure, where deleted and
added lines are denoted by “–” and “++”, respectively. The
three lines of code changes from P to P 0 introduce a concur-
rency bug: since the execution of Lines 5-6 is no longer atomic,
the value of ywritten at Line 5 may be modified by the other
thread via the write operation at Line 20, leading to an asser-
tion failure. Since this is a newly added program behavior–it
exists in P 0 but not in P – new test cases capable of covering
it must be generated and added to the existing test suite.

We now use the example to illustrate in detail how Con-
Tesa is able to generate new tests to expose this concurrency
failure. Details of the algorithms are described in Sections 3
and 4. First, ConTesa employs a change-impact analysis
to identify concurrency elements (e.g., shared variables)
involved in or affected by the three lines of code changes
(Section 3.1). Specifically, we consider global variables x and
y at Lines 5-6 as affected, because they are no longer protected
by the lock lk. These two affected global variables can result
in new thread interleavings, i.e., interleavings that are feasi-
ble in P 0 but infeasible in P . In contrast to x and y, we con-
sider variable z at Line 13 as not-affected because the change
does not affect how thread Thr1 interacts with thread Thr2.

Next, ConTesa constructs the interleaving schedule tar-
gets from the impacted concurrency elements (Section 3.2).
These targets are constructed based on a practical concur-
rency coverage criterion: the definition-use pairs of shared
variables [17]. That is, ConTesa identifies the set of inter-
thread DU pairs such that, for the two SV accesses in each
pair, at least one of them is affected by the code changes.
Intuitively, a DU pair describes the change propagation
across different threads. For the example program in Fig. 1,
the DU pairs are dupaff1 = < (5, wðyÞ), (16, rðyÞ) > , dupaff2
= < (16, wðxÞ), (5, rðxÞ) > , dupaff3 = < (5, wðyÞ), (20, rðyÞ)
> , dupaff4 = < (20, wðyÞ), (6, rðyÞ) > , where for each access,
the number denotes the corresponding line in the code, w
denotes a write operation, and r denotes a read operation.

Suppose t1 2 T is an existing test input such that t1 = {x =
0, y = -2, z = 0}. Prior to generating new test cases, ConTesa
computes the set of DU pairs that can be covered by execut-
ing the existing test input together with some random
thread schedules. Specifically, for t1, if it is executed on P 0

under the following thread schedule s1: 1! 2 ! 3 ! 9 !
15 ! 16 ! 17 ! 18 ! 19 ! 21, none of the four DU pairs
would be covered. In this case, ConTesa needs to generate
new test inputs (and their corresponding thread schedules)
to cover these four DU pairs (Section 4).

To cover dupaff1 , ConTesa uses symbolic execution along
the path explored by t1 to generate the new test input t2 = {x
= 5, y = -5, z = 0} and the schedule s2: 1! 2 ! 3 ! 4 !
5 ! 6 ! 15 ! 16 ! 17 ! 18 ! 19 ! 21. In other words,
when using t2 together with s2, ConTesa can cover the target
dupaff1 . To cover dupaff2 , ConTesa does not need to generate
another test input. Instead, it simply explores an alternative
thread schedule under the same test input t2 and see if it
covers the other DU pairs (Section 4.1). Since running the
program under t2 and s2 already covers the SV read access
(5, rðxÞ) followed by the write access (16, wðxÞ), ConTesa
flips the execution order of the two events to cover dupaff2 .

At this moment, the two remaining targets are dupaff3
and dupaff4 . ConTesa again invokes symbolic execution to
generate t3 = {x = 5, y = -1, z = 0} and the schedule: s3:

1! 2 ! 3 ! 4 ! 5 ! 15 ! 16 ! 17 ! 18 ! 19 ! 20 ! 21 !
6, which covers the target dupaff3 . Then, it seeks an alterna-
tive thread schedule by flipping the order of events (20,
wðyÞ) and (6, rðyÞ) to cover dupaff4 . Under this particular test
input and thread schedule, the assertion failure is revealed.

2.3 Relation to Existing Techniques

Since the assertion failure in Fig. 1 requires a combination of
test input and thread schedule to manifest, none of the
existing regression testing techniques, such as SIMRT [36],
CAPP [37], or RECONTEST [33], is effective. For example, SIMRT
only performs test input selection but does not consider the
impact of code changes in the thread interleaving space.
CAPP explores the change-induced thread interleaving space
but only for the given test inputs. RECONTEST improves over
CAPP by focusing the search on a small set of problematic
interleavings whose shared variables are affected by code
changes. However, all of these tools rely on existing test
inputs and therefore are restricted to exploring a subset of
affected thread interleavings. In contrast, ConTesa not only
explores the affected interleavings under existing test inputs
but also generates entirely new test inputs. As such, it has the
capability of driving the search through program paths and
thread interleavings not covered by these prior techniques,
which in turn lead to the detection ofmore bugs.

At the same time, ConTesa is significantly more efficient
than test case generation techniques that focus only on the
new program P 0 while completely ignoring the original pro-
gram P . For example, while symbolic execution based test-
ing techniques for concurrent programs [35], [38], [39] can
generate new test inputs and thread interleaving schedules,
they focus on a single program version (P 0) and thus do not
leverage the knowledge of what changed in P’ compared to
P or the existing test suite T for P . Consider our running
example in Fig. 1: if CON2COLIC [35] were to be applied to
P 0, it would have unnecessarily explored the unaffected
interleavings related to variables in the else-branch of Thr1
at Line 8, as well as the unaffected variable z at Line 13.

Although CONC-ISE [34] can leverage two program ver-
sions P and P 0 to reduce the cost of exploring both program
path and thread schedules in concurrent programs, it does
not reuse existing test cases in T to guide the symbolic exe-
cution or schedule exploration. For the example of Fig. 1,
CONC-ISE would invoke symbolic execution four times to
exercise the affected DU pairs. In contrast, a main advan-
tage of ConTesa is to leverage the existing test cases in T (for
P) to speed up the testing of P 0.

3 OVERALL APPROACH

Fig. 2 shows the overall flowofConTesa, which consists of four
main components: ImpAnalyzer for conducting change-
impact analysis, InvSelector for selecting interleaving
targets, SchedExplorer for exploring thread schedules,
and TestAugmentor for generating test inputs.

Given the set C0 of code changes made to the original
program P to produce the new program P 0, ImpAnalyzer
first computes a list L0

SV of program locations involving
shared variable accesses. It then identifies a subset L0

SV aff
�

L0
SV of these variables that may be affected by C0. ConTesa

focuses on identifying the affected shared variables because

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 407

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

the triggering of concurrency bugs considered in this work
depends on the exposure of erroneous inter-thread memory
dependencies. Next, InvSelector iterates through L0

SV aff

and identifies the shared variables that match a given access
pattern PTinv. By default, our access pattern is the DU pair,
meaning InvSelector produces a list of impacted DU
pairs, which form the interleaving schedule targets in ISD.

Next, ConTesa generates either new thread schedules or
new test inputs to cover the DU pairs in ISD. To avoid repe-
tition, it first applies each existing test input together with a
random schedule, and then invokes SchedExplorer to
seek alternative interleavings. At the end of this process, if
some DU pairs in ISD have not been covered, it invokes
TestAugmentor.

Inside TestAugmentor, ConTesa first executes the pro-
gram P 0 using an existing test input that reaches the
branches of the affected SV in an not-yet-covered DU pair.
Then, it performs symbolic execution of all local paths (with
a loop bound 10) within the threads, as well as the global
path across threads. Finally, it uses the path and thread con-
straints gathered along the execution to generate a new data
input and a new interleaving schedule, to drive the execu-
tion along a different path on a subsequent iteration (this is
accomplished by negating a predicate in the path condition
constraint during symbolic execution).

In general, SchedExplorer and TestAugmentormust
be applied iteratively until all DU pairs in ISD are covered,
or a predefined time limit is reached.

In the subsequent sections, we describe each of the four
components in more detail.

3.1 Concurrent Change-Impact Analysis

Identifying program entities affected by changes is a key step
in ConTesa. ImpAnalyzer is designed to conduct this
change-impact analysis. To handle concurrent software,
ImpAnalyzer extends the change-impact analysis procedure
of SimRT [36] by considering not only standard synchroniza-
tions (e.g., locks) but also ad-hoc synchronizations (e.g., busy-
waiting over loops using flags). In SimRT, a concurrency ele-
ment (e.g., shared variable) is regarded as impacted only when
it is changed, or all standard synchronizations it depends on
are changed. However, this approach cannot detect elements
affected by thread-local changes or changes involving ad-hoc
synchronizations.ConTesa addresses both issues.

Specifically, ImpAnalyzer first produces a list L0
SV of

variables that may be accessed by multiple threads in P 0.
These variables are computed using the shared variable
detection algorithm of Kahlon et al. [40], where each access
is labeled as either “write (def)” or “read (use)” through our
analysis. Next, ImpAnalyzer takes the program P 0 and

L0
SV to compute a list L0

SV aff
� L0

SV of affected shared varia-
bles in two steps.

In the first step, ImpAnalyzer computes a change set
(i.e., a set of changed instructions), denoted by Ddiff , using a
lightweight diff utility. Since the results reported by the stan-
dard diff command in Linux may generate too many false
positives (e.g., changing a variable name from x to y would
cause all lines referring to x as changed even if they are struc-
turally the same), we build the abstract syntax trees (ASTs) of
both P and P 0 and compare them structurally: we traverse
them in parallel to collect type and name mappings. Thus,
two variables are considered equal if we encounter them in
the same syntactic position reported by the diff tool. The ulti-
mate changes are added to the change setC.

In the second step, ImpAnalyzer computes, for each
changed instruction c 2 C, the shared variables affected by
c and adds them into L0

SV aff
. Thus, we perform an intra-

thread forward program slicing to identify all instructions,
I, that depend on c, and add the shared variables in I to
L0
SV aff

because they may affect the interleaving space of P 0.
Note that I [cmay contain local variables, shared variables,
as well as synchronizations. Next, for each synchronization
s 2 I [c, we compute all shared variables protected by s,
and add them to L0

SV aff
.

If s is a mutex operation, we record its synchronization
context (i.e., locksets used to protect the shared variables). If
the locksets on the same SV are different across two pro-
gram versions, the SV is affected and thus added to L0

SV aff
.

In our static analysis, the lockset of a shared variable SV is
the set of locks that may be held along any path leading to
the access of SV . We use the context-sensitive lockset ana-
lysis in [41] to compute the lockset for each SV access.
Specifically, we construct a concurrent control flow graph
(CCFG) [41] and uses backward slicing to capture all locks
that may reach the access of the shared variable. The lock
sets computed by our static analysis may induce false posi-
tives due to infeasible paths, which fortunately is eliminated
by the subsequent dynamic phase of the test augmentation.
For the program in Fig. 1, the lockset for the variables
(x and y) at Lines 5-6 are changed from {lk} to {f}, so these
variables are affected and thus added to L0

SV aff
.

If s is a wait-signal synchronization, all SV s that are
control-dependent on the wait operation and all SVs that
can reach the signal operation are affected and thus
added to L0

SV aff
.

3.2 Identifying the Impacted Interleaving Space

The impacted interleaving space, ISD, is computed inside
InvSelector by selecting thread schedules containing at
least one affected variable in L0

SV aff
. Since the number of

Fig. 2. Overall flow of ConTesa, the first regression test suite augmentation (RTA) framework for concurrent software.

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

thread interleavings may grow exponentially as the length
of the execution increases, we adopt a more practical cover-
age criterion. The goal is to help select a small number of
representative thread interleavings.

The current implementation of ConTesa employs an inter-
thread def-use criterion [17], which is satisfied if and only if
a write w in one thread happens before a read r in another
thread and there is no other write to the same variable
between them. Each DU pair containing at least one affected
SV is considered impacted and thus added to ISD. During
test augmentation, we leverage new symbolic execution
algorithms to efficiently generate test inputs as well as
thread schedules to cover all the DU pairs in ISD.

4 THE MAIN TEST AUGMENTATION ALGORITHM

The test augmentation procedure is shown in Algorithm 1,
which contains two subroutines SchedExplorer and
TestAugmentor. It begins with an initial set T of test
inputs and a set ISD of DU pairs serving as the coverage tar-
get TG (line 1). During the iterative process, we first invoke
SchedExplorer to execute all test inputs in T with ran-
dom thread schedules and check if any DU pair dup 2 TG is
covered (Line 4). ConTesa could also be used in conjunction
with SimRT [36] or Recontest [33] to speed up the explora-
tion. For each remaining DU pair that is not covered, we
invoke TestAugmentor to generate a new input tnew
together with a thread schedule snew (Line 6) capable of cov-
ering dup. If tnew and snew are successfully computed and
executed on P 0, the corresponding DU pair is covered and
tnew is added to the new test suite Tnew (Lines 7-10).

The order in which events in ISD are considered may
affect the performance of ConTesa. Here, SVD denotes all
shared variables in ISD and each shared variable in SVD is a
single coverage target. We have investigated the use of a
breadth-first search (BFS) order of shared variables in SVD.
Our conjecture is that, by guiding ConTesa toward paths
that explore the most not-yet-covered targets in the BFS order
may speed up the augmentation process, because test cases
generated earlier in process may cover shared variables
occurring later in process, thus obviating the need to con-
sider them again. It may also maximize the number of inter-
leavings to be explored per test input, thus reducing the
symbolic execution cost for generating more test inputs–see
our detailed discussions in Section 7.

The manner in which test inputs are used also affects the
performance of ConTesa. In this work, we allow for the possi-
bility of adding newly generated test inputs back into our set
of available test inputs. Specifically, if the Boolean flagUseNew
is set to true, the procedure inAlgorithm 1will combine newly
generated test inputs with original test inputs (Lines 13-15),
and this combined T will be used for the next iteration of our
algorithm. By default, UseNew is set to true. We shall discuss
the impact of this option inmore detail in Section 7.

4.1 Discovering New Interleaving Space

ConTesa invokes SchedExplorer to explore the interleav-
ing space affected by code changes using existing test inputs,
as shown at Line 4 of Algorithm 1. If a coverage target can be
reached, there is no need to generate new test inputs. Here,
SchedExplorer exercises each test input t 2 T on P 0 with a

random schedule, which leads to a concrete execution TRðtÞ.
If a target DU pair dup is exercised, TG is updated (Line 12)
to reflect that dup is covered by TRðtÞ.

Algorithm 1. ConTesaMain Augmentation Algorithm

Input: P 0, T , ISD

Output: Tnew

1: TG = ISD

2: while TG 6¼ f and Time � Limit do
3: for each dup 2 TG do
4: SchedExplorer(P 0, T , dup)
5: if dup is not covered then
6: < tnew, snew > = TestAugmentor(P 0, T , dup)
7: success = Execute(P 0, tnew, snew)
8: if success is true then
9: Tnew = Tnew [tnew
10: end if
11: end if
12: update(TG)
13: if UseNew then
14: T = Tnew [T
15: end if
16: end for
17: end while

If a dup is not covered but its flipped pair (< read,
write>) is exercised by TRðtÞ, we try to generate alternative
interleavings to cover dup. Toward this end, we construct a
partial order graph (POG) [42], which captures the ordering
of concurrent events in TRðtÞ. Let ðV;EÞ be the POG, where
V is the set of nodes corresponding to the events in TRðtÞ
and E is the set of edges between these nodes. Each edge
ðei; ejÞ 2 E represents a must-happen-before order between
ei and ej. To generate new thread schedules, we iteratively
pick a pair Ep ¼ ðRm;WmÞ, where Rm is a read and Wm is a
write with respect to the same memory location m. If
ðWm;RmÞ 2 dup, we try to generate a new interleaving by
flipping the two events in Ep while respecting the other
ordering constraints in the POG. In other words, ConTesa
derives the position of the legal flip by analyzing the POG.

To ensure the new thread schedule is feasible, we replay
it on P 0. If we can execute the program P 0 under the test
input and new thread schedule, we update TG to record
that the particular dup is covered. However, if such a thread
schedule cannot be generated, e.g., due to violations of
some ordering constraints in the POG or the infeasibility of
the generated schedule, the dup is not-yet-covered.

It is also possible that executing the new thread schedule
leads to deadlock when the POG does not precisely model
all synchronization primitives (e.g., some ad hoc synchroni-
zations written using shared variables). To address this
problem, ConTesa sets a timeout value (i.e., 30 seconds) just
in case that a deadlock occurs.

For the example program in Fig. 1, if the to-be-covered
DU pair is < (16, w(x)), (3, r(x))> , but the related order
< (3, r(x)), (16, w(x))> has been exercised by the execution
trace TRðtÞ, we try to generate an alternative thread sched-
ule by flipping the order of events (3, r(x)) and (16, w(x)).
What is interesting is that there can be multiple ways to
execute (3, r(x)) after (16, w(x)), some of which are better
than the others. For example, if we try to execute (3, r(x))

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 409

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

immediately after (16, w(x)), we would violate the mutual
exclusion constraints imposed by mutex locks. Therefore,
during the reordering of events, our algorithm has to con-
sider not only events involved in the target dup but also
events transitively depending on these events. For the
example program in Fig. 1, it means we need to move both
events (2, lock) and (3, r(x)) after (17, unlock).

4.2 Test Suite Augmentation

When a dup 2 TG cannot be covered by interleavings of any
existing test input, we generate a new test input using sym-
bolic execution. Algorithm 2 shows the test input generation
procedure, which accepts the following parameters as
input: the modified program P 0, the set T of existing test
inputs, and a to-be-covered DU pair (dup), and returns a set
NT of new test inputs as output. Furthermore, each new
test input is associated with a thread schedule for covering
a previously unreachable DU pair.

Algorithm 2. ConTesa Input Augmentation:
TestAugmentor

Input: P 0, T , an uncovered DU pair dup
Output: NT
1: Tcur = T // a set of the current test inputs
2: NT = f // a set of all new test inputs generated
3: whileNTcur 6¼ f do
4: NTcur = f //a set of newly generated test inputs in the

current execution of line 3 to line 25
5: if dup contains at least one uncovered sv then
6: Tdup = {all test inputs in Tcur that reach bdup:w or bdup:r}
7: else if isFlip(dup) is false then
8: Tdup = {all test inputs in Tcur that reach the unflipped

pair}
9: end if
10: TRsym = {all symbolic traces obtained from executing

Tdup}
11: for each st 2 TRsym do
12: fpcw = DelPred (pcdup:w, neg)
13: fpcr = DelPred (pcdup:r, neg)
14: F ¼ fpcw ^ fpcr ^ fsync ^ frw

15: if F is not seen before then
16: < tnew, snew > = Solve (F)
17: end if
18: if tnew 6¼ UNSAT and < tnew, snew > is replayed then
19: NTcur =NTcur [tnew
20: end if
21: end for
22: Tcur =NTcur

23: NT =NT [NTcur

24: end while
25: return NT

We use the to-be-covered dup to guide the computation
of per-thread path condition constraints and inter-thread
ordering constraints. Let bsv denote the branch that covers a
shared-variable access (sv) and bsv denote the alternative
branch; that is, if bsv is a then-branch, bsv is the correspond-
ing else-branch. Note that bsv does not have to be the imme-
diate dominator block of sv. In if(c1){if(c2){read

(sv);}}, for instance, the then-branches of both c1 and c2
can be considered as bsv for the shared variable access sv.

Initially, the set Tcur is set to be T (Line 1) and NT is an
empty set (Line 2). The procedure starts by reseting the
newly generated input set NTcur (Line 4). It then selects test
inputs from Tcur that can 1) reach bsv, where sv is either a read
(du:r) or a write (du:w) in the dup; and 2) reach both events in
the dup that cannot be flipped by SchedExplorer (Line 7).
If such a test input does not yet exist in Tcur, we use symbolic
execution to generate a new test input by solving the corre-
sponding symbolic constraints (Lines 11–21).

Our symbolic execution encodes both thread-local path
constraints and inter-thread synchronization and memory
constraints. Specifically, our procedure first computes the
path conditions (pcw and pcr) to reach the branches that exe-
cute both events in the dup (Lines 12-13). There are three
possible cases: 1) neither dup:w nor dup:r is covered, 2) only
one event (dup:w or dup:r) is covered, and 3) both dup:w and
dup:r are covered but their order cannot be flipped by
SchedExplorer. Inside DelNeg(pc, neg), if an event is
covered, neg is set to false; otherwise, neg is set to true.
Inside DelNeg, if neg is true, a new pc is generated by
negating the current branch in pc and removing all subse-
quent branches. If neg is false, the new pc is generated by
removing all subsequent branches without negating the
branch. For example, DelNeg(b1 ^ b2 ^ b3, true) = b1 ^ b2.

In addition to computing the path conditions (pcw and
pcr), we obtain ordering constraints for synchronizations
and shared memory accesses (fsync and frw), which form
the global ordering constraint F. During each iteration, if
the constraint F has not been decided before, we invoke an
SMT solver to decide it (Line 15). If F is satisfiable and the
solver returns a solution < tnew, snew > , which represents a
new test input and the corresponding thread schedule, we
add tnew to the setNTcur of newly generated test inputs.

At the high level, the algorithm iterates through all path
conditions whose execution traces reach the target branch
(Line 11). This allows it to generatemore test inputs and reach
predicates following the shared-variable access sv, which
may control additional branches that need to be covered.

Next, we describe two key steps of the symbolic exe-
cution procedure: symbolic trace collection and constraint
modeling.

4.2.1 Symbolic Trace Collection

Given a test input t, ConTesa first executes P 0 under an arbi-
trary thread schedule to produce an execution trace. As the
symbolic execution proceeds, ConTesa records information
about the control flow, thread synchronization, and shared
memory accesses within each thread. Thus, a symbolic trace
contains the following three types of information.

First, the trace includes a path condition per thread,
which is the sequence of control-flow decisions made in the
thread. Second, the trace includes inter-thread synchroniza-
tions such as lock, unlock, wait, signal, thread fork, and thread
join, together with the synchronization objects (e.g., mutex
locks). Third, the trace includes the read and write accesses
to shared memory. Since the value returned by a global
read depends on the interleaving schedule, we represent it
as a fresh symbolic value. On the other hand, the value writ-
ten to a shared-variable may be either symbolic or concrete.

Table 1 shows an example, where Column 1 repres-
ents a concrete execution of the program in Fig. 1 under

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

t1 = {x = 0, y = -2, z = 0}. Here, we use Wt:iv to denote
the value written to v at Line i of thread t, Rt:iv to denote
the value read from v at Line i of thread t, Lt:io to
denote the acquisition of lock o at Line i of thread t, and Ut:io
to denote the release of lock o at Line i of thread t. Column 2
represents the control-flow decision: R1:3x � 3 means the
value of x read by Thr1 at Line 3 is less than or equal to 3.

4.2.2 Constraint Modeling

The ordering constraint F encodes thread interactions,
whose solution consists of a set of inputs and a schedule
represented by a sequence of concurrent events. We allow
two types of variables inside F: symbolic values returned
by shared-variable reads, and ordering relation (i.e., �) that
captures the ordering of global events. Thus, F is the con-
junction of three constraints

F ¼ fpath ^ fsync ^ frw;

where fpath encodes the path condition constraints for all
threads, fsync encodes the ordering constraints determined by
synchronizations, and frw encodes shared-memory con-
straints. Although it is possible to express the variousmemory
consistency models [43], [44], [45], [46] in a similar fashion, in
this work, we focus on the sequential-consistencymemory only.
That is, we assume statements within each thread are exe-
cuted in the same order as they appear in the program.

Path Constraints (fpath). ConTesa collects path constraints
during the symbolic execution of individual threads. For
each thread, it records the outcome of every branching predi-
cate encountered during the execution. At the end of the exe-
cution, it tries to negate the branching predicate to cover an
event in the target DU pair. If a certain event has already
been covered, ConTesa removes the corresponding path
predicate from consideration. Overall, fpath denotes the con-
junction of path constraints computed across all threads.

For example, in Table 1, the third row shows the path con-
dition for the thread to reach the branch ofW 1:5y in the target
DU pair. Note that ConTesa negates the condition of this par-
ticular branch; it also removes all the subsequent path condi-
tions since they may no longer be needed. The fourth row
shows the path condition for the thread to reach the read
event R2:16y in the target DU pair. Since this event has been
covered, all the subsequent path conditions are also removed.

Synchronization Constraints (fsync). ConTesa collects two
types of synchronization constraints: partial order constraints
and locking constraints. The partial order constraints cap-
ture the must-happen-before ordering of operations from

concurrently running threads, such as thread fork/join and
wait/signal operations. For example, all events executed after
the wait must happen after all events before the correspond-
ing signal operation. In contrast, the locking constraints com-
ing from lock and unlock operations are modeled differently.
Let the lock and unlock operations in thread Thr1 be repre-
sented by L and U , respectively, and the lock and unlock
operations in thread Thr2 be represented by L’ and U’,
respectively. Then, the locking constraints involve the follow-
ing two possible cases. In the first case, threadThr1 acquiresL
first, soU happens beforeL0. In the second case,Thr2 acquires
the lock first, so U 0 happens before L. Thus, for each pair of
lock-unlock guarded critical sections, the disjunctive formula
that becomes part of fsync is composed of two constraints,
representing the alternation of the above two cases. In Table 1,
specifically, the fifth row shows the locking constraints for
our running example, which has two lock/unlock pairs in
the two threads. In this table, we use � to denote the must-
happen-before ordering relation between two events.

Read-Write Constraints (frw). ConTesa also collects the
read-write constraints to model all possible thread interac-
tions through the shared memory. In general, a read from
the shared memory may get the value written by a write in
the same thread, or values written by different threads,
depending on the order of the read and the writes. Thus,
frw is constructed as follows: for every read operation r on a
variable v, if r is matched to a write w of the same variable,
w must happen before r and there is no other write between
them. In Table 1, for instance, the sixth row shows a read-
write constraint for our running example: if R1:1y reads
directly from the input (Line 1), the write must happen after
the read operation (R1:1y � W 2:20y).

In ConTesa, we invoke an off-the-shelf SMT solver to
compute a solution for each symbolic variable that maps
every read to a certain write on the shared memory under
partial order constraints fsync and frw. The last column of
Table 1 shows the results. The size of our symbolic con-
straint, in the worst case, is linear in the number of condi-
tional branches and cubic in the number of shared variable
accesses in the execution trace.

4.3 Implementation

We have implemented ConTesa in a software tool that builds
upon a number of open-source platforms.3 Specifically,
we implemented ImpAnalyzer based on Diffutils and

TABLE 1
The Execution Trace for Fig. 1 Under the Test Input t1 = {x=0, y=-2, z=0} to Cover the Target < (5, wðyÞ), (16, rðyÞ)>

3. All data we used in our experiments are publicly available at
https://github.com/tingting703/ConTesa

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 411

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tingting703/ConTesa

CodeSurfer [47]. We implemented InvSelector in C++.
The SchedExplorer component was built upon the
PIN [48] dynamic instrumentation and analysis framework.
The TestAugmentor component was built upon both PIN
and KLEE [49], a symbolic virtual machine for C/C++. Spe-
cifically, we used KLEE to perform symbolic execution
based test input generation and PIN to enforce the thread
interleaving schedules. We also implemented the trace col-
lection component as an LLVM function pass, which, simi-
lar to the Java front-end of CLAP [43], records a basic-block
trace per thread and then uses the symbolic execution
engine in KLEE to generate the entire trace. Although our
implementation was based on LLVM, other similar tech-
nique for collecting concrete path profiles and generating
symbolic traces may be used as well.

5 EMPIRICAL STUDY

We aim to answer the following research questions:RQ1.
How effective is ConTesa in augmenting test cases to com-
plete the interleaving coverage and detect concurrency bugs
in the new program P 0?

RQ2. How efficient is ConTesa in generating new test
cases compared to state-of-the-art test generation tools for
concurrent software?

5.1 Objects of Analysis

Weconducted experiments on thirteenmultithreadedC/C++
applications. Three of the benchmarks, bbuf, swarm and
canneal, are from [50], where bbuf is a reference implemen-
tation of a shared buffer, swarm implements a parallel sort,
and canneal is a parallel implementation of the simulated

annealing algorithm to minimize the routing cost of a chip
design. Among the remaining benchmarks, pfscan is a
multi-threaded file scanner, which combines the functionality
of find, xargs, and fgrep; aget is a download accelerator
that spawns multiple threads to download different chunks
of a file in parallel; pbzip2 is a parallel implementation of
bzip2, which does file compression and file decompression;
transmission is a BitTorrent client software; cherokee is
a HTTP server; memcached is a general-purpose in-memory
distributed caching system, which is designed to speed up
websites by caching commonly requested data to ease back-
end processing and database loads; apache is a web server
that accepts configuration files on both client and server sites,
and multiple main entry points with command line options.
The last three benchmarks are open-source implementations
of lock-free data structures [56].

For each of the benchmark applications, we utilized two
program versions. In each case, the code changes leading to
the modified version contain a real concurrency bug. By
concurrency bug, we mean the program failure is caused
exclusively by incorrectly protected thread interactions as
opposed to errors in the sequential computation. For the
first four and the last three benchmark applications, since
there were no multiple versions available online, we used
the downloaded (and buggy) version as the new program,
and a fixed version as the original program.

Table 2 shows the statistics of these benchmark applica-
tions, containing the name of each application, the two pro-
gram versions, the bug sources and types, the number of
lines of non-comment code (NLOC), and the number of
threads. The bugs in the 13 applications involve four dead-
locks, eight order violations, and one atomicity violations.

TABLE 2
Characteristics of Objects and Runtime Statistics

Name Version Bug NLOC # Threads Tests % Impact % DUPaff % Cov DUPaff

bbuf v1 [50] 255
v2 deadlock 257 2 (50, 10) 3 9.1 72.2

swarm v1 [50] 1,636
v2 order 1,638 5 (50, 10) 4 3.3 65.3

canneal v1 [50] 2,822
v2 deadlock 2,833 2 (50, 10) 5 3.6 80.9

pfscan v1 [51] 960
v2 deadlock 962 3 (50, 10) 5 2.5 80.2

aget [52] 0.4.1 [53] 850
0.4 atomicity 858 3 (50, 10) 2 3.4 77.5

pbzip2 [54] 1.1.2b3 [53] 3,712
1.1.5 order 4,069 4 (50, 10) 11 7.9 79.2

cherokee [55] 0.4.0 [53] 20,204
0.4.1 order 20,430 6 (250, 50) 19 11.4 30.2

memcache 1.4.3 [53] 26,550
1.4.4 order 26,599 7 (250, 50) 8 8.8 29.5

transmission 1.41 [53] 154264
1.42 order 154,393 6 (250, 50) 14 12.4 25.4

apache 2.0.47 [53] 95,952
2.0.48 order 97,153 6 (250, 50) 21 14.5 31.2

nd-ls [56] v1 [34] 1,629
v2 order 1,770 5 (50, 10) 6 5.4 72.4

nd-sl [56] v1 [34] 2,091
v2 order 2,112 5 (50, 10) 4 3.2 78.5

nd-ht [56] v1 [34] 2,234
v2 order 2,325 5 (50, 10) 5 6.1 71.2

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

This also suggests that order violations are more common
than the other types of bugs in these benchmark programs.

To answer the research questions in a statistically signifi-
cant manner, we also need a set of existing inputs in the test
suite. We wish to evaluate the effectiveness and efficiency
of our technique when using test suites of different sizes.
Toward this end, we createN test suites for each benchmark
application, where a test suite consists of M test inputs.
Column 6 of Table 2 lists the number of test inputs (M)
together with the number of test suites (N), denoted by the
pair (M, N), indicating there is a total number ofM �N test
inputs. We created more test suites and test inputs for the
second set of benchmark programs because they are larger
and more complex compared to the other benchmark pro-
grams. We inserted an assertion statement to the faulty loca-
tion of each benchmark program.

Since the benchmark programs are not shipped with sys-
tem tests that can test the functionality of the program, we
need to generate tests for them. Specifically, the test inputs
for bbuf are the number of consumers and producers; these
inputs are randomly generated. For swarm, the test inputs
are randomly generated arrays. For canneal, the test
inputs are randomly generated integers. For pfscan, the
test inputs are strings and files that we created to search a
random string from a randomly chosen file or directory in
each test run. For aget, the test inputs are randomly chosen
files to be downloaded from the Internet specified by a pre-
defined set of URLs. For pbzip2, the test inputs are some
random files that we compressed a prioriwith different com-
binations of options. For memcached, the test inputs are
chosen from some manually written test cases for perform-
ing operations such as set/get keys and incr/decr keys. For
transmission, the test inputs are randomly downloaded
torrents fed into the program under different configura-
tions. For cherokee and apache, the test inputs are com-
mands for issuing a session of requests to a set of static web
pages using httperf under a given configuration. For the
three nbds programs, the test inputs are randomly gener-
ated data fed to different data structures.

Statistics in the last three columns of Table 2 will be pre-
sented later in this section.

5.2 Variables and Measures

5.2.1 Independent Variables

Our independent variable involves are techniques used in
the study. We wish to determine if ConTesa is cost-effective,
and ideally such an assessment involves comparisons with
state-of-the-art tools. However, since there is no prior work
on regression test augmentation for concurrent software,
we instead compare to three somewhat related techniques.

The first technique is Conc-iSE [34], which employs an
incremental symbolic execution algorithm to generate test
inputs and interleaving schedules. However, Conc-iSE does
not reuse test suites for guiding symbolic execution or
schedule exploration, but instead generates all the test
inputs from scratch.

The second technique isCon2colic [35], a tool for generating
test inputs and thread interleavings for concurrent software.
Since the tool is not publicly available, we re-implemented it
in our own framework. A difference between Con2colic and
ConTesa isConc2colicdoes not reuse existing test suites.

The third technique is ReConTest [33], which selects new
interleavings of existing test inputs that contain at least one
of the affected accesses. However, it does not generate new
test inputs. Note that deactivating symbolic execution of
ConTesa does not get ReConTest because ConTesa uses sym-
bolic execution to generate both new inputs and new inter-
leavings, whereas ReConTest uses existing test inputs to
explore new interleavings. Since the original ReConTest tool
only handles Java programs, we also re-implemented it to
handle C/C++ applications.

5.2.2 Dependent Variables

Our dependent variables are the metrics chosen to measure
the effectiveness and efficiency of ConTesa and the other
techniques. In terms of effectiveness, we measure, for the
inter-thread DU pairs affected by code changes, the percent-
age covered by tests resulting from each of the aforemen-
tioned tools. To account for possible differences in coverage
per execution of the initial test suites, we executed each
object on the various sets of initial test suites, and calculated
the average. We then compared the number of concurrency
failures detected by each tool.

In terms of efficiency, we first measured the average num-
ber of inputs generated by different techniques. We then
measured the total testing time of each tool, together with a
breakdown in terms of the time required for impact analysis
(if any), for generating inputs (if any) and interleaving sched-
ules, and for replaying the program. Finally, we measured
the time it took to detect the fault for each technique. To
account for possible differences in the testing times per exe-
cution of initial test suites, we executed each object on the
various initial test suites and then calculated the average.

5.3 Study Operation

Column 7 shows the number of DU pairs impacted by the
code changes in modified program versions. Column 8
shows the percentage of the affected DU pairs over all DU
pairs in the program. Column 9 reports the affected DU
pairs covered by the existing test cases. During our experi-
ments, we set a time-budget of 12 hours for each tool, which
is in line with the use of regression testing in practice (e.g.,
nightly-build-and-test). The maximum time for the solver
(i.e., the option –max-solver-time) in KLEE is set to
300 seconds. For each pair of tool comparisons, we applied
a t-test to the coverage (cost) data and used 0.05 as the confi-
dence level to determine whether there is a statistically sig-
nificant difference between two techniques.

6 RESULTS

Tables 3 and 4 show the results, including the testing cover-
age and the number of faults detected by each technique.

6.1 RQ1: Effectiveness of ConTesa

RQ1 involves the effectiveness of ConTesa in obtaining high
coverage of the affected DU pairs and the related faults.

Coverage. The average test coverage, as measured by the
affected DU pairs, ranges from 71.1 to 100 percent as shown
in Columns 2-5 of Table 3. For eight benchmark programs,
ConTesa achieved 100 percent coverage. On nine out of the
thirteen programs, Conc2colic achieved the same coverage as

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 413

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

ConTesa, but on four larger applications, namely cherokee,
memcache, transmission and apache, ConTesa achieved
significantly higher coverage. When comparing ConTesa to
ReConTest, we found that on ten out of the thirteen programs,
ConTesawas significantly better, whereas on three programs,
they were equally effective–this was because all the affected
DUpairs in these three programs could be exercised by exist-
ing test inputs. When comparing ConTesa to Conc-iSE, we
found that ConTesa performed better on four programs:
cherokee, memcache, transmission, and apache, indi-
cating the use of existing test suites can significantly increase
the performance, particularly on large software.

Fault Detection. The numbers of faults detected by
ConTesa and the three competing techniques are shown in
Columns 6-9 of Table 3. Specifically, ConTesa detected all of
the thirteen concurrency bugs. For the programs where
ConTesa did not achieve 100 percent coverage, the reason is
due to known limitations of KLEE: for example, in some
cases, covering specific DU pairs requires the program
inputs to be hierarchical file directories, but KLEE models
the file system as a flattened system, where symbolic files
can only have pathnames such as “A”, “B”, and “C” with-
out any hierarchy. Other cases were due to timeouts KLEE
encountered when solving the hard formulas.

In contrast, Conc-iSE detected eleven, Con2colic detected
nine, and ReConTest detected six. These results indicate that
ConTesa is more effective in detecting concurrency faults
than state-of-the-art techniques.

6.2 RQ2: Efficiency of ConTesa

RQ2 involves the number of generated test inputs and time
taken by ConTesa to obtain high coverage of the affected DU
pairs.

Columns 2-5 of Table 4 show the the number of test
inputs generated for the four techniques. Overall, ConTesa
generates 61.6 percent less test inputs than Conc2colic and
85.9 percent less test inputs than Con2Colic. Since ReConTest
does not generate new inputs, the numbers are all 0s.

Columns 6-9 show the total execution time of the four
techniques on achieving the coverage of affected DU pairs.
Overall, ReConTest required the least amount of time beca-
use it does not need to augment test cases. ConTesa was the
second fastest and completed on all thirteen benchmark
applications. In contrast, Conc-iSE timed out on two applica-
tions and Conc2colic timed out on four applications. Further-
more, on the nine program for which all techniques
completed, ConTesa was 2.5x to 39.3x faster than Con2Colic,
and 1.5x to 1.9x faster than Conc-iSE. These results indicate

TABLE 4
Efficiency of ConTesa Compared to Three State-of-the-Art Testing Techniques

Name # Test Inputs Executing Time (seconds) Detection Time (seconds)

ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest

bbuf 0 2 6 0 2.1 3.4 19.5 1.23 1.8 2.5 10.6 1.6
swarm 2 5 8 0 19.5 50.8 1159.2 13.8 11.4 29.4 395.6 10.5
canneal 0 2 5 0 39.4 74.5 99.2 18.3 7.9 32.2 85.5 -
pfscan 0 3 7 0 19.4 91.2 201.1 12.3 12.3 49.2 98.9 10.9

aget 3 4 9 0 209.1 392.4 462.4 121.5 66.3 70.2 101.5 -
pbzip2 3 7 15 0 50.5 80.2 166.2 33.2 28.5 39.5 91.3 19.6
cherokee 6 21 49 0 3059.7 5948.5 > 1198.0 1211.5 2648.8 - -
memcache 21 56 88 0 1542.5 3021.4 > 316.5 682.4 988.9 - -
transmission 19 33 139 0 8482.9 > > 1098.1 2138.4 - - 477.2
apache 16 42 156 0 6704.6 > > 2125.0 4985.6 - - -

nbds-list 2 9 19 0 421.2 692.8 2022.1 102.4 308.4 392.5 1148.7 42.3
nbds-slist 3 12 25 0 322.3 588.6 1674.4 158.2 262.0 407.6 1692.4 -
nbds-htable 3 11 27 0 205.5 386.7 1842.1 144.2 178.3 308.5 1596.6 -

TABLE 3
Effectiveness of ConTesa Compared to Three State-of-the-Art Testing Techniques

Name Testing Coverage (%) Faults Detected

ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest

bbuf 100 100 100 100 @ @ @ @
swarm 100 100 100 100 @ @ @ @
canneal 100 100 100 0 @ @ @ •

pfscan 100 100 100 100 @ @ @ @

aget 100 100 100 0 @ @ @ •

pbzip2 89.2 89.2 89.2 58.0 @ @ @ @
cherokee 82.3 70.8 41.4 64.9 @ @ • •

memcache 88.5 69.4 41.3 68.6 @ @ • •

transmission 76.5 67.5 45.4 54.7 @ • • @
apache 71.1 58.8 34.0 41.3 @ • • •

nbds-list 100 100 100 63.2 @ @ @ @
nbds-slist 100 100 100 70.0 @ @ @ •

nbds-htable 100 100 100 71.5 @ @ @ •

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

that ConTesa is more efficient. When comparing ConTesa
to ReConTest, we found that on the six programs in which
ConTesa did not call TestAugmentor, ConTesa required
more time because it needed to generate the symbolic traces,
which introduced extra overhead. On the other five pro-
grams, ConTesa required more time because it invoked
TestAugmentor to generate inputs. But overall, ReCon-
Test achieved 34.4 percent less coverage and detected
53.8 percent less concurrency bugs. Considering the effec-
tiveness of ConTesa, its additional cost is acceptable.

Fig. 3 displays the results regarding the percentage of
time used in running impact analysis, schedule exploration,
and test input generation. Overall, the time for impact anal-
ysis never exceeded 33 seconds, which accounted for only
0.67 percent of technique runtime overall. The times for
schedule exploration and test case input are 23.8 and
75.5 percent of the overall runtime, respectively.

The last four columns of Table 4 show the time spent on
detecting the faults for each technique. The symbol “-” indi-
cates no faults were detected. On average, on the 11 pro-
grams that both ConTesa and Con2Colic detected the faults,
ConTesa was 1.8x faster than Con2Colic to expose the faults.
Compared ConTesa to Con2Colic, ConTesa was 6x faster. On
the six programs in which faults were detected by both Con-
Tesa and ReConTest, ConTesa was 6x slower than ReConTest.
Again, these results suggest that ConTesa is more cost-
effective than the other three techniques.

6.3 Threats to Validity

The primary threat to external validity is the representative-
ness of our objects and test cases, since other objects and
test cases may exhibit different behaviors and cost-benefit
tradeoffs. However, the threat has been significantly redu-
ced by our use of reputable open-source objects from a vari-
ety of previously published studies, as well as a large
number of initial test suites. The primary threat to internal
validity is possible defects in the implementation of our own
tool as well as the tools we re-implemented to perform the
experimental evaluation on C/C++ applications. We have
been careful in our implementation, used extensive testing
as well as manual inspection to determine the correctness of
the experimental results. In terms of the construct validity,
there are other metrics that could be pertinent to the effects
studied. In particular, our measurements of cost consider
only the execution time of the tool while omitting the time
taken by engineers to use the tool. Our time measurements

also suffer from the potential biases discussed under internal
validity, given the inherent difficulty in obtaining an efficient
tool prototype.

7 SUMMARY AND DISCUSSIONS

7.1 Summary of Results

ConTesa was more effective (in terms of coverage and fault
detection) and efficient (in terms of execution time and fault
detection time) than Conc-ise, Con2colic. Compared to
Con2colic and Conc-ise, the main advantage of ConTesa is
the reuse of existing test inputs for guiding symbolic execu-
tion, which scales better on large programs. ConTesa was
more effective than ReConTest, because ConTesa augments
existing test inputs to cover more program elements related
to concurrency faults. While ConTesa was less efficient than
ReConTest due to the additional time for generating inputs,
the cost is acceptable considering the benefits of high cover-
age and fault detection rate.

7.2 Discussions

We now explore additional observations relevant to our
study.

Ordering Affected Program Entities. We also investigated,
within ConTesa, the impact of exploring the program entities
in different orders. Specifically, we compared the perfor-
mance of using the default breadth-first search order with
random order. Results of this comparison are shown in
Columns 2 and 3 of Table 5, where the testing coverage is
shown in Column 2 and the testing time is shown in
Column 3. Each entry summarizes the differences observed:
“B” means BFSachieved a greater mean coverage or faster
time, “R” means Random achieved a greater mean coverage
or faster time, and “=“ means the two exhibited equal mean
coverage. The symbols marked as ? mean the differences
were statistically significant. The numbers in the parenthe-
ses indicate the improvements of coverage and the reduc-
tions of the runtime cost.

These results show that, in terms of the testing coverage,
the order of exploration does not significantly affect the effec-
tiveness of the algorithm. This is reasonable because the
same program elements would ultimately be considered
under any order. However, in terms of the testing time, the

Fig. 3. Percentage of the running time spent on impact analysis, sched-
ule exploration, and test case generation.

TABLE 5
Impact of Implementation Choices Inside ConTesa

Name BFS Search vs Random Existing vs New Method

Coverage " Time # Coverage " Time #
Bbuf = R (4.2%) = E (3.5%)
Swarm = B (6.4%) = E (7.8%)
Canneal = B (6.9%) = E? (5.2%)
Pfscan = B (6.6%) = E? (9.3%)
Aget = B (4.5%) = E? (6.8%)
Pbzip2 = B (8.9%) = E? (4.2%)
Cherokee = B? (5.5%) N? (11.3%) E? (3.2%)
Memcache = B? (6.9%) N? (3.2%) E? (4.2%)
Transmission = B? (3.6%) N? (5.8%) E? (9.7%)
Apache = B? (2.2%) = E? (8.2%)
nbds-list = B (1.2%) = E (2.8%)
nbds-skiplist = B? (3.3%) = E? (2.5%)
nbds-hashtable = B? (2.1%) = E? (1.9%)

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 415

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

order of exploration does make significant differences. Our
results show that BFS often provides savings in the execution
time. This is because test cases that cover branches higher in
dependency chains would have inputs close to those used to
reach lower branches, thus seeding their inputs to help Con-
Tesa reach the targets more quickly. Overall, BFS seems to be
more efficient, but these results do not preclude other order-
ings that may be evenmore cost-effective.

Existing and New Test Inputs. We considered two cases of
reusing test inputs in ConTesa: 1) reusing only the existing
test inputs, and 2) reusing both existing and newly-generated
test inputs. The experimental comparison of these two appr-
oaches was shown in Columns 4-5 of Table 5, where “E”
means the first option achieved better results and “N” means
the second option achieved better results. In terms of testing
coverage, the second option is slightly better, whereas in
terms of time, the first option is consistently better.

The results show that reusing newly generated test
inputs increases the testing cost, with mostly marginal bene-
fit. It highlights the tradeoff between achieving higher cov-
erage and reducing the testing time. Our conjecture is that,
on larger programs, the gain in testing effectiveness may be
worth the slowdown in the testing time.

Effectiveness of Existing Test Inputs. We next discuss how
different existing test suites can affect the effectiveness and
efficiency of ConTesa. We consider four cases: 1) the set of
existing test inputs is empty, 2) the set of existing test inputs
covers all affected DU pairs, 3) the set of existing test inputs
is not empty, but it does not contain any failure-inducing
inputs, and 4) the set of existing test inputs is not empty
and it contains one failure-inducing input and it does not
cover all affected DU pairs.

In the first case, ConTesa and Conc-iSE behave equiva-
lently because ConTesa needs to generate all new test inputs
and interleaving schedules to cover affected DU pairs. In
the second case (an idea case), ConTesa is equal to ReConTest
because both techniques only need to exercise existing test
inputs without generating new inputs or new interleavings
for achieving the coverage.

In the third case, ReConTest would not be able to detect
faults because new test inputs are needed to exercise the
faultyDUpairs. To compareConTesawithConc-iSE andCon2-
Colic, we removed all failure-inducing inputs from the test
suites generated in our empirical study. The results showed
that ConTesawas still 1.6x faster than Conc-iSE and 5.8x faster
than Con2Colic on exposing the faults. This is because Conc-
iSE and Con2Colic required generating new inputs to to cover
the affectedDUpairs before reaching the faulty pair.

In the fourth case, wemanually created a failure-inducing
input for each subject and added it to the test suites. The
results showed that ConTesa was much more faster than
Conc-iSE (2.3x) and Con2Colic (6.8x). Because of the failure-
inducing inputs, both ConTesa and ReConTest detected equal
number of faults and ReConTestwas 6.2x faster than ConTesa.
However, ConTesa achieved 47.8 percent more coverage
thanReConTest.

Application of ConTesa. By design, ConTesa is cost-effective
only when the code changes between P and P 0 affects a
small subset of the entire program. If the entire program is
affected, the incremental analysis in ConTesawill degenerate
to the non-incremental one with little advantage over

traditional techniques. Therefore, ConTesa is the most suit-
able for development environments where the correctness
of frequent but small code changes is checked before com-
mitted to the repository. In our experiments, 10 out of the 13
applications are developer-made code modifications that
meet the aforementioned criterion: these code modifications
affected 0.3 to 10.3 percent of the program entities. There-
fore, they reflect at least some real-world software develop-
ment scenarios in practice. However, it remains an open
question whether they reflect the vast majority of real-world
software development scenarios.

Interleaving Coverage Criteria. Interleaving coverage crite-
ria may impact how well ConTesa works. Lu et al. [17]
introduced seven interleaving coverage criteria, which are
designed based on different concurrency fault models.
Their cost ranges from exponential to linear. Study by Hong
et al. [57] also confirmed the effectiveness of concurrency
fault detection can vary depending on such criteria. For the
three baseline tools compared in our work, Conc-iSE does
not measure coverage, Con2colic measures branch coverage,
and ReConTest measures access patterns violating atomic-
set serializability. While ConTesa employs Def-Use criteria
by default, as part of the future work, it is important to
investigate the cost-effectiveness of RTA under other crite-
ria [30] in the context of regression testing.

8 RELATED WORK

There is a large and growing body of work on testing con-
current programs [18], [19], [20], [21], [22], [24], [25], [26],
[27], [28], [29], [31], [32], but most existing techniques do not
consider the regression testing of evolving software.

Among the few techniques that target regression testing
for concurrent programs, none of them solves the regression
test augmentation problem. SimRT [36] is a test case selec-
tion and prioritization framework for concurrent programs.
However, it does not generate new test inputs or reduce the
interleaving exploration cost inherent in testing. ReCon-
Test [33] addresses this problem by selecting new interleav-
ings that arise due to code changes but may miss accesses
not exercised by existing test inputs. Conc-iSE [34] is an
incremental symbolic execution algorithm for concurrent
software, which leverages execution summaries [39] to
prune away previous explored execution traces. While it is
capable of generating new test inputs and thread schedules,
it does not reuse existing test cases to explore the affected
interleaving space or guide the input generation.

In a position paper we published earlier [58], we envi-
sioned a general framework within which regression test
augmentation may be implemented for multithreaded pro-
grams, to reuse existing test suites as well as generate new
test cases. However, the framework was not yet realized or
evaluated. In this work, we developed the initial idea,
implemented what is believed to be the first RTA tool for
multithreaded C/C++ programs, and evaluated it on a large
set of real-world applications.

There are change-impact analysis techniques designed
with a particular focus on multi-threaded programs [33],
[36], [37], [59]. There are also change-impact analysis tech-
niques for distributed systems [60], [61], [62], [63], [64].
Although these techniques may result in different costs and

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

benefits, and in principle, may be leveraged by ConTesa,
they do not address the RTA problems themselves.

There are also testing techniques [26], [30], [65], such as
CHESS, that select and prioritize the interleaving schedules in
concurrent software to expose bugs more quickly. Other tech-
niques have been geared toward systematically exploring the
thread schedules inmulti-threaded programs across program
versions [37], [66]. In particular, Gligoric et al. [66] reuse
results from the exploration of one program version to speed
up the exploration of the next program version. Jagannath
et al. [37] use information about program changes in software
evolution to prioritize the exploration of schedules. These
techniques, however, target exploration of schedules within
individual test cases and do not address the challenges of
regression testing involving large sets of test cases.

More recently, Deng et al. [67] experimentally studied how
well various existing concurrency fault detection tools per-
form for a set of test inputs. They also proposed a technique
that first measures coverage of a program, and then selects a
subset of test inputs to test for data races and atomicity viola-
tions on that program. However, their technique focuses on a
single program version and does not consider code changes.
Also, like SimRT [36] and ReConTest [33], their technique
relies on existing test inputs. In contrast, themain contribution
of ourwork is to leverage the code changes tomore effectively
reuse existing test suites aswell as generate new test cases.

At the same time, there are many techniques for test suite
augmentation [13], [14], [15], [16], [68]. Santelices et al. [13]
combines dependence analysis and symbolic execution to
identify chains of data and control dependencies that, if
tested, are likely to exercise the effects of changes. Person
et al. [68] presents a differential technique that uses symbolic
execution to identify affected elements more precisely
than [13], and yields constraints that can be input to a solver
to generate test cases for those requirements. However, these
techniques focus only on sequential programs; they are inca-
pable of effectively identifying affected concurrency pro-
gram elements or generating inputs or thread interleavings
to exercise concurrency-related new program behaviors.

9 CONCLUSIONS AND FUTURE WORK

We have presented ConTesa, a regression test augmentation
tool for concurrent software, capable of reusing the existing
test suites as well as generating new test cases. It treats the
test input generation and interleaving exploration problems
uniformly, in which new test inputs are generated from test
reuse to guide the exploration of affected interleaving space
not yet covered by existing inputs. It can also replay regres-
sion concurrency faults by leveraging an active scheduler.
We have evaluated ConTesa on a set of multithreaded Linux
applications. Our results show that it outperforms state-of-
the-art techniques in terms of the execution time, testing
coverage, and fault-detection capability.

There are other test case generation techniques that could
be used to address the RTA problem. In this work, we
choose to focus on a dynamic technique that leverages exist-
ing test cases. Other dynamic techniques, such as evolution-
ary or search-based approaches, are also known to be
effective in addressing RTA for sequential problems [14]; as
part of our future work, we will evaluate these dynamic test

case generation techniques. In addition, we plan to perform
more extensive experiments on additional sets of bench-
mark programs.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Sci-
ence Foundation (NSF) under grants CCF-1652149 and
CCF-1722710 and the Office of Naval Research (ONR) under
grant N00014-17-1-2896.

REFERENCES

[1] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Trans. Softw. Eng. Methodology, vol. 6,
no. 2, pp. 173–210, 1997.

[2] G. Rothermel and M. J. Harrold, “Analyzing regression test selec-
tion techniques,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–
551, Aug. 1996.

[3] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritiza-
tion for modified condition/decision coverage,” IEEE Trans.
Softw. Eng., vol. 29, no. 3, pp. 195–209, Mar. 2003.

[4] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to
large software systems,” in Proc. Int. Symp. Found. Softw. Eng.,
vol. 29, no. 6, 2004, pp. 241–251.

[5] R. Santelices, M. J. Harrold, and A. Orso, “Precisely detecting run-
time change interactions for evolving software,” in Proc. IEEE Int.
Conf. Softw. Testing Verification Validation, 2010, pp. 429–438.

[6] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for
regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10,
pp. 102–112, Oct. 2001.

[7] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Trans. Softw. Eng.,
vol. 33, no. 4, pp. 225–237, Apr. 2007.

[8] H. Do and G. Rothermel, “On the use of mutation faults in empiri-
cal assessments of test case prioritization techniques,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 733–752, Sep. 2006.

[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prior-
itization: A family of empirical studies,” IEEE Trans. Softw. Eng.,
vol. 28, no. 2, pp. 159–182, Feb. 2002.

[10] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Application of
system models in regression test suite prioritization,” in Proc.
IEEE Int. Conf. Softw. Maintenance, 2008, pp. 247–256.

[11] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in
development environment,” in Proc. Int. Symp. Softw. Testing
Anal., 2002, pp. 97–106.

[12] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases
to achieve effective and scalable prioritisation incorporating
expert knowledge,” in Proc. Int. Symp. Softw. Testing Anal., 2009,
pp. 201–212.

[13] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and
M. J. Harrold, “Test-suite augmentation for evolving software,” in
Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2008, pp. 218–227.

[14] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed
test suite augmentation: Techniques and tradeoffs,” in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 257–266.

[15] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “eXpress:
Guided path exploration for efficient regression test generation,”
in Proc. Int. Symp. Softw. Testing Anal., 2011, pp. 1–11.

[16] J. Campos, A. Arcuri, G. Fraser, and R. Abreu, “Continuous test
generation: Enhancing continuous integration with automated
test generation,” in Proc. ACM/IEEE Int. Conf. Autom. Softw. Eng.,
2014, pp. 55–66.

[17] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving coverage
criteria,” in Proc. 6th Joint Meeting Eur. Softw. Eng. Conf. ACM SIG-
SOFT Symp. Found. Softw. Eng., 2007, pp. 533–536.

[18] C. von Praun and T. R. Gross, “Static conflict analysis for multi-
threaded object-oriented programs,” in Proc. ACM SIGPLAN Conf.
Program. Language Des. Implementation, 2003, pp. 115–128.

[19] C. Flanagan and S. Qadeer, “A type and effect system for atom-
icity,” in Proc. ACM SIGPLAN Conf. Program. Language Des. Imple-
mentation, 2003, pp. 338–349.

[20] A. Williams, W. Thies, and M. D. Ernst, “Static deadlock detection
for Java libraries,” in Proc. Eur. Conf. Object-Oriented Program.,
2005, pp. 602–629.

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 417

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

[21] M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective static deadlock
detection,” in Proc. Int. Conf. Softw. Eng., 2009, pp. 386–396.

[22] S. Joshi, S. K. Lahiri, and A. Lal, “Underspecified harnesses and
interleaved bugs,” in Proc. 39th Annu. ACM SIGPLAN-SIGACT
Symp. Principles Program. Lang., 2012, pp. 19–30.

[23] M. Kusano and C. Wang, “Flow-sensitive composition of thread-
modular abstract interpretation,” in Proc. ACM SIGSOFT Symp.
Found. Softw. Eng., 2016, pp. 799–809.

[24] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–
232, 2003.

[25] K. Sen, “Effective random testing of concurrent programs,” in
Proc. Int. Conf. Autom. Softw. Eng., 2007, pp. 323–332.

[26] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing Heisenbugs in concurrent
programs,” in Proc. USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, pp. 267–280.

[27] K. Sen, “Race directed random testing of concurrent programs,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2008, pp. 11–21.

[28] K. E. Coons, S. Burckhardt, and M. Musuvathi, “GAMBIT: Effec-
tive unit testing for concurrency libraries,” in Proc. ACM SIGPLAN
Symp. Principles Practice Parallel Program., 2010, pp. 15–24.

[29] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding
bugs,” in Proc. Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2010, pp. 167–178.

[30] C.Wang,M. Said, andA. Gupta, “Coverage guided systematic con-
currency testing,” in Proc. Int. Conf. Softw. Eng., 2011, pp. 221–230.

[31] M. Pradel and T. R. Gross, “Fully automatic and precise detection
of thread safety violations,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2012, pp. 521–530.

[32] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov,
“BALLERINA: Automatic generation and clustering of efficient
random unit tests for multithreaded code,” in Proc. Int. Conf.
Softw. Eng., 2012, pp. 727–737.

[33] V. Terragni, S.-C. Cheung, and C. Zhang, “RECONTEST: Effective
regression testing of concurrent programs,” in Proc. IEEE Int.
Conf. Softw. Eng., 2015, pp. 246–256.

[34] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental sym-
bolic execution of concurrent software,” in Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., 2016, pp. 531–542.

[35] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2Colic
testing,” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2013,
pp. 37–47.

[36] T. Yu, W. Srisa-an, and G. Rothermel, “SimRT: An automated
framework to support regression testing for data races,” in Proc.
Int. Conf. Softw. Eng., 2014, pp. 48–59.

[37] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware preemp-
tion prioritization,” in Proc. Int. Symp. Softw. Testing Anal., 2011,
pp. 133–143.

[38] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in Proc. Int. Conf. Comput.
Aided Verification, 2006, pp. 419–423.

[39] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta, “Assertion
guided symbolic execution of multithreaded programs,” in Proc.
ACM SIGSOFT Symp. Found. Softw. Eng., 2015, pp. 854–865.

[40] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast
and accurate static data-race detection for concurrent
programs,” in Proc. Int. Conf. Comput. Aided Verification, 2007,
pp. 226–239.

[41] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race
detection for concurrent programs with asynchronous calls,” in
Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.
Found. Softw. Eng., 2009, pp. 13–22.

[42] J. Huang and C. Zhang, “Persuasive prediction of concurrency
access anomalies,” in Proc. Int. Symp. Softw. Testing Anal., 2011,
pp. 144–154.

[43] J. Huang, C. Zhang, and J. Dolby, “CLAP: Recording local execu-
tions to reproduce concurrency failures,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2013, pp. 141–152.

[44] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for
efficient bounded model checking of concurrent software,” in
Proc. Int. Conf. Comput. Aided Verification, 2013, pp. 141–157.

[45] B. Demsky and P. Lam, “SATCheck: SAT-directed stateless model
checking for SC and TSO,” in Proc. ACM SIGPLAN Conf. Object
Oriented Program. Syst. Lang. Appl., 2015, pp. 20–36.

[46] M. Kusano and C. Wang, “Thread-modular static analysis for
relaxed memory models,” in Proc. ACM SIGSOFT Symp. Found.
Softw. Eng., 2017, pp. 337–348.

[47] GrammaTech, “CodeSurfer,”Webpage. [Online]. Available: http://
www.grammatech.com/products/codesurfer/overview.html,
2018.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building custom-
ized program analysis tools with dynamic instrumentation,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2005, pp. 190–200.

[49] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. USENIX Conf. Operating Syst. Des. Implementation,
2008, pp. 209–224.

[50] N. Jalbert and K. Sen, “A trace simplification technique for effec-
tive debugging of concurrent programs,” in Proc. ACM SIGSOFT
Symp. Found. Softw. Eng., 2010, pp. 57–66.

[51] Parallel file scanner, 1999. [Online]. Available: http://ostatic.
com/pfscan

[52] AGET, “Multithreaded HTTP download accelerator,” Web page.
[Online]. Available: http://www.enderunix.org/aget/, 2002.

[53] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A cov-
erage-driven testing tool for multithreaded programs,” in Proc.
ACM SIGPLAN Conf. Object Oriented Program. Syst. Lang. Appl.,
2012, pp. 485–502.

[54] BZIP2, “Parallel BZIP2,” Web page. [Online]. Available: http://
compression.ca/pbzip2/, 2005.

[55] Cherokee, “Cherokee,” Web page. [Online]. Available: http://
cherokee-project.com, 2013.

[56] NBDS, “Non-blocking data structures,” Web page. [Online].
Available: https://code.google.com/p/nbds/, 2009.

[57] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “Are con-
currency coverage metrics effective for testing: A comprehensive
empirical investigation,” Softw. Testing Verification Reliab., vol. 25,
pp. 334–370, 2015.

[58] T. Yu, “TACO: Test suite augmentation for concurrent programs,”
in Proc. ACMSIGSOFT Symp. Found. Softw. Eng., 2015, pp. 918–921.

[59] K. Chatterjee, L. De Alfaro, V. Raman, and C. S�anchez, “Analyz-
ing the impact of change in multi-threaded programs,” in Proc.
Int. Conf. Fundam. Approaches Softw. Eng., 2010, pp. 293–307.

[60] K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, and
S. U. Khan, “Impact analysis and change propagation in service-
oriented enterprises: A systematic review,” Inf. Syst., vol. 54,
pp. 43–73, 2015.

[61] H. Cai and D. Thain, “DISTEA: Efficient dynamic impact ana-
lysis for distributed systems,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., vol. abs/1604.04638, pp. 344–455, 2016.

[62] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Impact
analysis for distributed event-based systems,” in Proc. ACM Int.
Conf. Distrib. Event-Based Syst., 2012, pp. 241–251.

[63] S. Tragatschnig and U. Zdun, “Modeling change patterns for
impact and conflict analysis in event-driven architectures,” in
Proc. IEEE Int. Conf. Enabling Technol.: Infrastructure Collaborative
Enterprises, 2015, pp. 44–46.

[64] S. Tragatschnig, H. Tran, and U. Zdun, “Impact analysis for event-
based systems using change patterns,” in Proc. Annu. ACM Symp.
Appl. Comput., 2014, pp. 763–768.

[65] K. E. Coons, S. Burckhardt, and M. Musuvathi, “GAMBIT:
Effective unit testing for concurrency libraries,” in Proc. 15th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2010,
pp. 15–24.

[66] M. Gligoric, V. Jagannath, and D. Marinov, “MuTMuT: Efficient
exploration for mutation testing of multithreaded code,” in Proc.
Int. Conf. Softw. Testing Verification Validation, 2010, pp. 55–64.

[67] D. Deng, W. Zhang, and S. Lu, “Efficient concurrency-bug detec-
tion across inputs,” in Proc. Int. Conf. Object-Oriented Program.
Syst. Lang. Appl., 2013, pp. 785–802.

[68] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Psreanu, “Differential
symbolic execution,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2008, pp. 226–237.

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 4, APRIL 2020

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

http://www.grammatech.com/products/codesurfer/overview.html
http://www.grammatech.com/products/codesurfer/overview.html
http://ostatic.com/pfscan
http://ostatic.com/pfscan
http://www.enderunix.org/aget/
http://compression.ca/pbzip2/
http://compression.ca/pbzip2/
http://cherokee-project.com
http://cherokee-project.com
https://code.google.com/p/nbds/

Tingting Yu received the BE degree in software
engineering from Sichuan University, in 2008,
and the MS and PhD degrees from the University
of Nebraska-Lincoln, in 2014. She is an assistant
professor of Computer Science, University of
Kentucky. Her research is in software engineer-
ing, with focus on developing methods and tools
for improving reliability and security of complex
software systems; testing for sequential and
concurrent software; regression testing; and
performance testing. She was a recipient of the

NSF Faculty CAREER Award in 2017. She is a member of the IEEE.

Zunchen Huang received the BS degree in elec-
trical engineering with a minor in computer sci-
ence from the University of Kentucky, Lexington,
KY, in 2016, and the MS degree in computer
science from New York University, New York,
NY, in 2018. He will start working PhD degree at
University of Southern California in fall 2018. His
main research interests are software engineer-
ing, formal methods and foundations of program-
ming languages.

Chao Wang (M’02) received the PhD degree
from the University of Colorado, Boulder, CO, in
2004. He is an associate professor with the
Department of Computer Science, University of
Southern California, Los Angeles, CA. He has
published a book and more than 80 papers in the
areas of software engineering and formal meth-
ods. He received the FMCAD Best Paper Award
in 2013, the ACM SIGSOFT Distinguished Paper
Award in 2010, and the ACM TODAES Best
Paper of the Year Award in 2008. He was a recip-

ient of the ONR Young Investigator Award in 2013 and the NSF Faculty
CAREER Award in 2012. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YU ET AL.: CONTESA: DIRECTED TEST SUITE AUGMENTATION FOR CONCURRENT SOFTWARE 419

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:51:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

