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Abstract—We propose a new method for runtime checking
of a relaxed consistency property calledquasi linearizability for
concurrent data structures. Quasi linearizability generalizes the
standard notion of linearizability by introducing nondeterminism
into the parallel computations quantitatively and then exploiting
such nondeterminism to improve the runtime performance.
However, ensuring the quantitative aspects of this correctness
condition in the low-level code of the concurrent data structure
implementation is a difficult task. Our runtime verification
method is the first fully automated method for checking quasi
linearizability in the C/C++ code of concurrent data structures.
It guarantees that all the reported quasi linearizability violations
manifested by the concurrent executions are real violations. We
have implemented our method in a software tool based on the
LLVM compiler and a systematic concurrency testing tool called
Inspect. Our experimental evaluation shows that the new method
is effective in detecting quasi linearizability violations in the
source code implementations of concurrent data structures.

Index Terms—Runtime verification, linearizability, serializabil-
ity, atomicity, relaxed consistency, systematic concurrency testing,
partial order reduction

I. I NTRODUCTION

Concurrent data structures are the foundation of many multi-
core and high-performance software systems. By providing
a cost-effective way to reduce the memory contention and
increase the scalability, they have found many applications
ranging from embedded computing to distributed systems such
as the cloud. However, implementing concurrent data struc-
tures is not an easy task due to the subtle interactions of low-
level concurrent operations and the often astronomically many
thread interleavings. In practice, even a few hundred linesof
highly concurrent C/C++ code can pose severe challenges for
testing and debugging.

Linearizability [1], [2] is thede factocorrectness condition
for implementing concurrent data structures. It requires that
every interleaved execution of the methods of a concurrent ob-
ject to be equivalent, in some sense, to a sequential execution
of these methods. This is extremely useful as a correctness
condition for application developers because, as long as the
program is correct while running in the sequential mode
using the standard (sequential) data structure, switchingto a
concurrent version of the same data structure would not change
the program behavior. Although being linearizable alone does
not guarantee correctness of the program, not satisfying the
linearizability requirement almost always indicates thatthe
implementation is buggy.
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Quasi linearizability [3] is a quantitative relaxation of
linearizability that has attracted a lot of attention in recent
years [4], [5], [6], [7], [8]. For many highly parallel appli-
cations, the standard notion of linearizability often imposes
unnecessary restrictions on the implementation, thereby lead-
ing to severe performance bottlenecks. Quasi linearizability
has the advantage of preserving the intuition of standard
linearizability while providing some additional flexibility in
the implementation. For example, the task queue used in the
scheduler of a thread pool does not need to follow the strict
FIFO order. That is, one can use a relaxed queue that allows
some tasks to be overtaken occasionally if such relaxation
leads to superior runtime performance. Similarly, concurrent
data structures used for web cache need not follow the strict
semantics of the standard versions, since occasionally getting
the stale data is acceptable. In distributed systems, a unique
identifier (id) generator does not need to be a perfect counter
because to avoid becoming a performance bottleneck, it is
often acceptable for the ids to be out of order occasionally,
as long as it happens within a bounded time frame. Quasi
linearizability allows the concurrent objects to have such
occasional deviations from the standard semantics in exchange
of higher performance.

While quasi linearizable concurrent data structures can have
tremendous runtime performance advantages, ensuring the
quantitative aspects of this correctness condition in the actual
implementation is not an easy task. In this paper, we propose
the first fully automated runtime verification method, called
Round-Up, for checking quasi linearizability violations of
concurrent data structures. To the best of our knowledge, prior
to Round-Up, there does not exist any method for checking,
for example, thedeq operation of a relaxed queue is not over-
taken by otherdeq operations for more thank times. Most
of the existing concurrency bug detection methods focus on
detecting simple bug patterns such as deadlocks, data-races,
and atomicity violations, as opposed to quantitative properties
manifested inquasi linearizability.

Our work also differs from the large body of work on
checking standard linearizability, which is not a quantita-
tive property. Broadly speaking, existing methods for check-
ing standard linearizability fall into three groups. The first
group consists of methods based on constructing mechanical
proofs [9], [10], which typically require significant user in-
tervention. The second group consists of automated methods
based on techniques such as model checking [11], [12], [13],
which work only on finite-state models or abstractions of the
actual concurrent data structures. The third group consists
of runtime verification tools that can directly check the im-
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plementation at the source-code level, but only for standard
linearizability.

In contrast, Round-Up is the first runtime verification
method for checking quasi linearizability in the source code
implementations of concurrent data structures. It is fullyauto-
mated in that the method does not require the user to provide
functional specifications or to annotate the linearizationpoints
in the code. It takes the source code of a concurrent objecto,
a test programP that useso, and a quasi factorK as input,
and returns eithertrue or false as output. It also guarantees to
report only real linearizability violations.

We have implemented the method in a software tool based
on the LLVM compiler [14] and a systematic concurrency
testing tool called Inspect [15], [16]. Our method can handle
C/C++ programs that are written using the POSIX threads and
GNU built-in atomic functions. Our experimental evaluation
of the tool on a large set of concurrent data structure imple-
mentations shows that the new method is effective in detecting
both standard and quasi linearizability violations. For example,
we have found several real implementation bugs in theScal
suite [17], which is an open-source package that implements
some recently published concurrent data structures. The bugs
that we found in theScal benchmarks have been confirmed
by the developers.

To sum up, this paper makes the following contributions:
• We propose the first method for runtime checking of quasi

linearizability in the source-code implementation of low-
level concurrent data structures. The new method is fully
automated and can guarantee that all the reported quasi
linearizability violations are real violations.

• We have implemented the new method in a software tool
based on LLVM and Inspect and evaluated the tool on
the real C/C++ code of a large set of concurrent data
structures. The results demonstrate that the new method
is effective in detecting standard and quasi linearizability
violations.

The remainder of this paper is organized as follows. We
provide a few motivating examples in Section II and explain
the main technical challenges in checking quasi linearizability.
We establish notation in Section III and then present the overall
algorithm in Section IV. We present the detailed algorithm for
checking quasi linearizability in Section V. Our experimental
results are presented in Sections VI. We review related workin
Section VII, and finally give our conclusions in Section VIII.

II. M OTIVATING EXAMPLES

In this section, we illustrate the standard and quasi lin-
earizability properties and outline the technical challenges in
checking such properties. Figure 1 shows a multithreaded
program that invokes theenq and deq methods of a queue,
whereenq(i) adds data itemi to the end of the queue and
deq removes the data item from the head. If Thread 2 executes
enq(3) atomically, i.e., without interference from Thread 3,
there will be three interleaved executions of the methods,
all of which behave like a single-threaded execution. The
sequential histories, shown in Figure 2, satisfy the standard
FIFO semantics of the queue. Therefore, we call themlegal
sequential histories.

Thread 1: Thread 2: Thread 3:

o.enq(3)

Timeline:

o.enq(1)

o.enq(2)

o.deq()

o.deq()

o.deq()

o.enq(4)

o.deq()

Fig. 1. A 3-threaded program that uses objecto. Thread 1 starts by adding
values 1 and 2 to the queuebefore creating two child threads. Then it waits
for the child threads to terminate before removing another three data items.
Hereenq(3) runs concurrently withenq(4) anddeq() in Thread 3.

History 1: History 2: History 3: Timeline:

o.enq(3)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=3

o.deq()=4

o.enq(4)

o.deq()=1

o.enq(4)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=4

o.deq()=3

o.enq(3)

o.deq()=1 o.enq(3)

o.enq(1)

o.enq(2)

o.deq()=2

o.deq()=4

o.deq()=3

o.enq(4)

o.deq()=1

Fig. 2. The set oflegal sequential historiesgenerated by the program in
Figure 1. These legal sequential histories form thesequential specification.

If the time interval ofenq(3), which starts at the method’s
invocation and ends at its response, overlaps with the time
intervals of enq(4) and deq(), the execution is no longer
sequential. In this case, the interleaved execution is called a
concurrent history. When the implementation of the queue is
linearizable, no matter how the instructions ofenq(3) inter-
leave with the instructions ofenq(4) anddeq(), the external
behavior of the queue would remain the same. We say that
the queue islinearizableif the sequence ofdeq values of any
concurrent historymatches one of the three legal sequential
histories in Figure 2. On the other hand, if the sequence of
deq values is 3,2,1,4 in a concurrent history, for example, we
say that the concurrent history has a linearizability violation,
because the object no longer behaves like a FIFO queue.

However, being linearizable often means that the imple-
mentation has significant performance overhead, for example,
when it is used by a large number of concurrent threads.
For a quasi linearizable queue, in contrast, it is acceptable
to have thedeq values being out of order occasionally, if
such relaxation of the standard FIFO semantics can help
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1 2 3 4H1-a:

1 2 4 3H1-b:

2 1 3 4H1-c:
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Fig. 3. An example implementation of1-quasi linearizablequeue, where
each of the linked list item is a segment that holds two data items. The first
deq randomly returns a value from the set{1, 2} and the seconddeq returns
the remaining one. Then the thirddeq randomly returns a value from the set
{3, 4} and the fourthdeq returns the remaining one.

improve the performance. For example, instead of using a
standard linked list to implement the queue, one may use
a linked list of 2-cell segments to implement the 1-quasi
linearizable queue (Figure 3). In this case, thedeq operation
may remove any of the two data items in the head segment. By
using randomization, it is possible for two threads to remove
different data items from the head simultaneously without
introducing memory contention.

Assume that the relaxed queue contains four values 1,2,3,4
initially. The first twodeq operations would retrieve either 1,2
or 2,1, and the next twodeq operations would retrieve either
3,4 or 4,3. Together, there are four possible combinations as
shown in Figure 3. Among them,H1-a is linearizable. The
other three are not linearizable, but they are considered as1-
quasi linearizable, meaning thatdeq values in these concurrent
histories are out-of-order by at most one step.

However, implementing such quasi linearizable concurrent
data structures is a difficult task. Subtle bugs can be introduced
during both the design phase and the implementation phase.
Consider an alternative way of implementing the 1-quasi
linearizable queue as illustrated in Figure 4, where the first two
data items are grouped into a virtual window. Adeq operation
may retrieve any of the first 2 data items from the head based
on randomization. Furthermore, only after both data items in
the current window are removed, will thedeq operation move
on to retrieve data items in the next window. The resulting
behavior of this implementation should be identical to thatof
the segmented queue.

However, a subtle bug would appear if one ignores the use
of thevirtual window. For example, ifdeq always returns one
of the first two data items in the current queue, although
it appears to be correct, the implementation would not be
considered as 1-quasi linearizable. In this case, it is possible
for some data item to be over-taken indefinitely, thereby
making the data structure unsuitable for applications where
a 1-quasi queue is desired. For example, if every time thedeq

operation removesthe second data item in the list, we would
get a sequence ofdeq values as follows: 2,3,4,..., where value
1 is left in the queue indefinitely.
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Fig. 4. An alternative implementation of1-quasi linearizablequeue, which
is based on the random-dequeued queue. The firstdeq randomly returns a
value from{1, 2} and the seconddeq returns the remaining one. Then the
third deq randomly returns a value from the new window{3, 4} and the
fourth deq returns the remaining one.

The above example demonstrates the need for a new verifi-
cation method that can help detect violations of the quantitative
properties in quasi linearizable concurrent data structures.
Unfortunately, existing concurrency bug checking tools focus
primarily on simple bug patterns such as deadlocks and data-
races. They are not well suited for checking quantitative
properties in the low-level code that implements concurrent
data structures. To the best of our knowledge, the method
proposed in this paper is the first runtime verification method
for detecting quasi linearizability violations in the source code
of concurrent data structures.

III. PRELIMINARIES

A. Linearizability

We follow the notation in [1], [2] to define ahistory as
a sequence of events, denotedh = e1e2 . . . en, where each
event is either a method invocation or a method response for
an object.When there are multiple objects involved in the
history h, we useρ = h|o to denote the projection ofh to
the objecto, which results in a subsequence of events related
only to this object.When there are multiple threads, letρ|T
denote the projection of historyρ to threadT , which is the
subsequence of events of this thread. Two historiesρ andρ′

are equivalent, denotedρ ∼ ρ′, if and only if ρ|Ti = ρ′|Ti for
all threadTi, wherei = 1, . . . , k. Therefore, two equivalent
histories have the same set of events, but the events may be
arranged in different orders.

A sequential historyis one that starts with a method invo-
cation, and each method invocation is followed immediately
by the matching response; in other words, no two method
call intervals are overlapping. Otherwise, the history is called
a concurrent history. Let <ρ be the precedence relation of
events in the historyρ. Let ρ[e] be the index of the evente in
ρ. For two eventse1 ande2, we say thate1 <ρ e2 if and only
if ρ[e1] < ρ[e2].

Definition 1: A sequentializationof a concurrent historyρ
is a sequential historyρ′ such that (1)ρ′ ∼ ρ, meaning that
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they share the same set of events, and (2)∀ei, ej : (ei <ρ ej)
implies (ei <ρ′ ej). That is, the non-overlapping method calls
in ρ retain their execution order inρ′, whereas the overlapping
method calls inρ may take effect in any order inρ′.

A sequential specificationof object o, denotedspec(o), is
the set of alllegal sequential histories – they are histories that
conform to the semantics of the object. For example, a legal
sequential history of a queue is one in which all theenq/deq

values follow the FIFO order.
Definition 2: A concurrent historyρ is linearizable with

respect to a sequential specificationspec(o) if and only if it
has a sequentializationρ′ such thatρ′ ∈ spec(o). In other
words, as long as the concurrent historyρ can be mapped to at
least one legal sequential historyρ′ ∈ spec(o), it is considered
as linearizable.

B. Quasi Linearizability

The notion of quasi linearizability relies on the permutation
distance between two sequential histories. Letρ′ = e′1e

′

2 . . . e
′

n

be a permutation ofρ = e1e2 . . . en. Let ∆(ρ, ρ′) be the
distance betweenρ andρ′ defined asmaxe∈ρ{ |ρ[e]−ρ′[e]| }.
We useρ[e] andρ′[e] to denote the index of evente in ρ andρ′,
respectively. Therefore,∆( ρ, ρ′ ) is the maximum distance
that some event inρ has to travel to its new position inρ′.

Quasi linearizability is often defined on a subset of the
object’s methods. LetDomain(o) be the set of all op-
erations of objecto. Let d ⊂ Domain(o) be a subset.
Let Powerset(Domain(o)) be the set of all subsets of
Domain(o). Let D ⊂ Powerset(Domain(o)) be a subset of
the powerset.

Definition 3:Thequasi-linearization factor(or quasi factor)
for a concurrent objecto is a functionQo : D → N , where
D ⊂ Powerset(Domain(o)) and N is the set of natural
numbers.

For example, a queue whereenq operations always follow
the FIFO order, butdeq values may be out-of-order by at most
K steps, can be specified as follows:

Denq = { 〈o.enq(x), void〉 | x ∈ X }
Ddeq = { 〈o.deq(), x〉 | x ∈ X }
Qqueue(Denq) = 0
Qqueue(Ddeq) = K

Here,〈o.enq(x), void〉 represents the invocation ofo.enq(x)
and the return valuevoid, wherex ∈ X is the data value
added to the queue. Similarly,〈o.deq(), x〉 represents the in-
vocation ofo.deq() and the return valuex. Qqueue(Denq) = 0
means that theenq events follow the standard FIFO order.
Qqueue(Ddeq) = K means that thedeq events are allowed
to be out-of-order by at mostK steps.Such relaxed queue
can be useful in producer-consumer applications, for example,
when data are enqueued by a single producer and dequeued by
multiple consumers. By relaxing the ordering of the dequeue
operations alone, we allow at mostK consumers to retrieve
data from the queue simultaneously, without any memory
contention. The relaxed semantics allows more freedom in the
implementation of the concurrent queue, thereby leading to
significant performance improvement [4], [8].

Definition 4:A concurrent historyρ is quasi linearizable [3]
with respect to a sequential specificationspec(o) and quasi
factorQo iff ρ has a sequentializationρ′ such that,

• either ρ′ ∈ spec(o), meaning thatρ is linearizable and
hence is also quasi linearizable, or

• there exists a permutationρ′′ of the sequentializationρ′

such that

– ρ′′ ∈ spec(o); and
– ∆( ρ′|d, ρ′′|d ) ≤ Qo(d) for all subsetd ∈ D.

In other words,ρ′ needs to be a legal sequential history by
itself or be within a bounded distance from a legal sequential
history ρ′′.

From now on, given a sequential historyρ′, we call Ψ =
{ ρ′′ | ∆( ρ′|d, ρ′′|d ) ≤ Qo(d) for all d ∈ D } the set of
quasi-permutationsof ρ′.

Quasi linearizability is compositional in that a historyh
is quasi linearizable if and only if subhistoryh|o, for each
object o, is quasi linearizable. This allows us to check quasi
linearizability on each individual object in isolation, which
reduces the computational overhead. Furthermore, the standard
notion of linearizability is subsumed by quasi linearizability
with Qo : D → 0.

C. Checking (Quasi) Linearizability

There are at least three levels where one can check the
(quasi) linearizability property.

• L1: check if a concurrent historyρ is linearizable:

∃ sequentializationρ′ of history ρ: ρ′ ∈ spec(o).

• L2: check if a concurrent programP is linearizable:

∀ concurrent historyρ of P : ρ is linearizable.

• L3: check if a concurrent objecto is linearizable:

∀ test programP that uses objecto: P is linearizable.

L3 may be regarded as the full-fledged verification of the
concurrent object, whereas L1 and L2 may be regarded as
runtime bug detection. In this paper, we focus primarily on
the L1 and L2 checks. That is, given a test programP
that uses the concurrent objecto, we systematically generate
the set of concurrent histories ofP and then check if all
of these concurrent histories are (quasi) linearizable. Our
main contribution is to propose a new algorithm for deciding
whether a concurrent historyρ is quasi linearizable.

IV. OVERALL ALGORITHM

The overall algorithm for checking quasi linearizability
consists of two phases (see Figure 5). In Phase 1, we systemat-
ically execute the test programP together with a standard data
structure implementation to construct a sequential specification
spec(o), which consists of all the legal sequential histories.
In Phase 2, we systematically execute the test programP
together with the concurrent data structure implementation,
and for each concurrent historyρ, check whetherρ is quasi
linearizable.
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For widely used data structures such as queues, stacks, and
priority queues, a sequential version may serve as the golden
model in Phase 1. Alternatively, the user may use a specifically
configured concurrent data structure as the golden model, e.g.,
by setting the quasi factor of a relaxed queue implementation
to 0, which effectively turns it into a normal queue.

In Phase 1, we use a systematic concurrency testing tool
called Inspect [15], [16] to compute all the legal sequential
histories. Given a multithreaded C/C++ program and fixed data
input, Inspect can be used to systematically generate all pos-
sible thread interleavings of the program under the data input.
In order to use Inspect in Phase 1, we have modified Inspect
to automatically wrap up every method call of a shared object
o in a lock/unlock pair. For example, method callo.enq()

becomeslock(lk);o.enq();unlock(lk), where we assign a
lock lk to each objecto to ensure that context switches happen
only at the method call boundary. In other words, all method
calls of objecto are executed serially. Furthermore, Inspect can
guarantee that all the possible sequential histories of this form
are generated.We leverage theselegal sequential historiesto
construct the sequential specificationspec(o) of the objecto.
For any given test programP , the sequential specification
spec(o) is represented as the set of all legal sequential histories
of the test programP . We focus on checking the linearizability
of each individual concurrent object without loss of generality,
because linearizability is compositional in that an execution
history is linearizable with respect to multiple objects ifit is
linearizable with respect to each individual object.

In Phase 2, we use Inspect again to compute the set of
concurrent histories of the same test program. However, this
time, we allow the instructions within the method bodies
to interleave freely. This can be accomplished by invoking
Inspect in its default mode, without adding the aforementioned
lock/unlock pairs. In addition to handling the POSIX thread
functions such as mutex lock/unlock and signal/wait, we have
extended Inspect to support the set of GNU built-in functions
for atomic memory access, which are frequently used in
practice for implementing concurrent data structures. Since we
use LLVM as the front-end for code instrumentation, it means
that we treat LLVM atomic instructions such ascmpxchg
and atomicrmw similar to shared variable write instructions.
Here, cmpxchg refers to the atomic compare-and-exchange
instruction, andatomicrmw refers to the atomic read-modify-
write instruction.During Phase 2, Inspect will interleave them
systematically while generating the concurrent histories.

Our core algorithm for checking whether a concurrent
history ρ is quasi linearizable is invoked in Phase 2.

• For each concurrent historyρ, we compute the setΦ of
sequentializationsof ρ (see Definition 1).

• If any ρ′ ∈ Φ matches a legal sequential history in
spec(o), we conclude thatρ is linearizable and therefore
is also quasi linearizable.

• Otherwise, for each sequentializationρ′ ∈ Φ, we compute
the setΨ of quasi-permutationsof ρ′ with respect to the
given quasi factor, which defines the distance betweenρ′

and eachρ′′ ∈ Ψ (see Definition 4):

– If there exists a quasi permutationρ′′ of ρ′ such that

ρ′′ ∈ spec(o), thenρ is quasi linearizable.
– Otherwise,ρ is not quasi linearizable and hence not

linearizable either.

The pseudocode for checking quasi linearizability is shown
in Algorithm 1, which takes a concurrent historyρ and a
quasi factorK as input and returns either TRUE (quasi
linearizable) or FALSE (not quasi linearizable).For ease of
presentation, we assume thatOo(d) = K for all subsets
d ∈ Powerset(Domain(o)), whereK is an integer constant.
The main challenge in Algorithm 1 is to generate the setΦ
of sequentializations of the given historyρ and the setΨ of
quasi permutations of eachρ′ ∈ Φ. The first step will be
explained in the remainder of this section. The second step,
which is significantly more involved, will be explained in the
next section.

Algorithm 1 Checking the quasi linearizability of the concur-
rent historyρ with respect to the quasi factorK.
1: check_quasi_linearizability ( ρ,K )
2: {
3: Φ← compute_sequentializations( ρ );
4: for each ( ρ′ ∈ Φ ) {
5: if ( ρ′ ∈ spec(o) ) return TRUE;
6: Ψ← compute_quasi_permutations( ρ′,K );
7: for each ( ρ′′ ∈ Ψ ) {
8: if ( ρ′′ ∈ spec(o) ) return TRUE;
9: }

10: }
11: return FALSE;
12: }
13: compute_sequentializations ( ρ )
14: {
15: Φ← {ρ};
16: while ( ∃ a concurrent historyρ0 ∈ Φ ) {
17: Let ρ0 = ϕ inv1 inv2 φ resp1 ψ resp2 . . .;
18: ρ1 ← ϕ inv1 resp1 inv2 φ ψ resp2 . . .;
19: ρ2 ← ϕ inv2 resp2 inv1 φ resp1 ψ . . .;
20: Φ← Φ ∪ {ρ1, ρ2} \ {ρ0};
21: }
22: return Φ;
23: }
24: compute_quasi_permutations ( ρ′,K )
25: {
26: Ψ← { };
27: statestack← first_run( ρ′,K );
28: while ( TRUE ) {
29: ρ′′ ← backtrack_run ( state stack,ρ′ );
30: if ( ρ′′ = = null ) break;
31: Ψ← Ψ ∪ {ρ′′};
32: }
33: return Ψ;
34: }

We now explain the detailed algorithm for comput-
ing the set Φ of sequentializations for the given his-
tory ρ. The computation is carried out by Subrou-
tine compute_sequentializations(ρ). Let a history ρ0 =
ϕ inv1 inv2 φ resp1 ψ resp2 . . . whereϕ, φ andψ are arbi-
trary subsequences andinv1, inv2 are the invocation events of
the first two overlapping method calls. We will replaceρ0 in Φ
with the new historiesρ1 andρ2. In other words, for any two
method call pairs(invi, respi) and(invj , respj) in ρ, if they
do not overlap in time, meaning that eitherrespi <ρ invj or
respj <ρ invi, we will keep this execution order. But if they
overlap in time, we will generate two new histories, where one
hasrespi <ρ invj and the other hasrespj <ρ invi.
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Phase 1:
deterministic 
FIFO queue
(golden model)

(under test)

Phase 2:
quasi−linearizable
queue

it belongs tospec(o)

{ρ}

sequential specification

concurrent histories

spec(o)

for eachρ, generate all
sequentializations{ρ′} quasi permutations{ρ′′}

For eachρ′, generate all

For eachρ′′, check if

Fig. 5. The overall flow of our new quasi linearizability checking algorithm.

inv1

resp1

inv2

resp2

inv3

resp3

History 0

inv3

resp3

History 1 History 2

resp1

inv1

inv2

resp2

inv1

resp1

inv3

resp3

inv2

resp2

Fig. 6. Example: Computingsequentializationsof a given concurrent history
by repeatedly sequentializing the first two overlapping method calls denoted
by (inv1,resp1) and(inv2,resp2).

Example. Consider the history in Figure 6 (left). The first two
overlapping calls start withinv1 andinv2, respectively.

• First, we construct a new history where(inv1, resp1)
is moved ahead of(inv2, resp2). This is straightforward
because, by the time we identifyinv1 andinv2, we can
continue to traverse the event sequence to findresp1 in ρ0
and then move it ahead of eventinv2. Since the resulting
History 1 still has overlapping method calls, we repeat
the process in the next iteration.

• Second, we construct a new history by moving
(inv2, resp2) ahead of(inv1, resp1). This is a little more
involved because there can be many other method calls
of ThreadT1 that are executed betweeninv2 andresp2.
We take all these events betweeninv1 and resp2, and
move them afterresp2. In this example, the new history
is History 2.

The complexity of compute_sequentializations(ρ) de-
pends on the length of the input historyρ, as well as the
number of overlapping method calls. LetM denote the length
of the history ρ and L denote the number of overlapping
method calls (whereL ≤M ). The complexity for computing
all sequentializations ofρ is O(M × 2L) in the worst case. In
practice, however, this subroutine will not become a perfor-
mance bottleneck for two reasons. First, to expose linearizabil-
ity violations, small test programs with few concurrent method
calls often suffice, which means thatM is small. Second, the

input to our method,ρ = h|o, is a subsequence of the original
history projected to the objecto, thereby consisting of only the
events related to objecto. Since linearizability is inherently
compositional, we can check it for each individual object in
isolation.

After computing the setΦ of sequentializations, we check if
anyρ′ ∈ Φ is a legal sequential history, as shown at Line 4 in
Algorithm 1. According to Definition 1, as long as one sequen-
tializationρ′ ∈ Φ is a legal sequential history,ρ is linearizable,
which means that it is also quasi linearizable. Otherwise,ρ is
not linearizable (but may still be quasi linearizable).

V. CHECKING FOR QUASI L INEARIZABILITY

To check whether a sequentializationρ′ ∈ Φ is
quasi linearizable, we need to invoke Subroutine
compute_quasi_permutations(ρ′,K). As shown in
Algorithm 1, the subroutine consists of two steps. In
the first step,first_run is invoked to construct a doubly
linked list to hold the sequence of states connected by events
in ρ′, denotedstate_stack: s1

e1−→ s2
e2−→ . . . sn

en−→. Each
statesi, where i = 1, . . . , n, represents an abstract state of
the objecto. Subroutinefirst_run also fills up the fields
of each state with the information needed later to generate
the quasi permutations. In the second step, we generate
quasi permutations ofρ′ ∈ Ψ, one at a time, by calling
backtrack_run.

A. Example: Constructing Quasi Permutations

We generate the quasi permutations by reshuffling the
events in ρ′ to form new histories. More specifically, we
compute all possible permutations ofρ′, denoted{ρ′′}, such
that the distance betweenρ′ andρ′′ is bounded by the quasi
factorK. Our method for constructing the quasi permutations
follows thestrict out-of-ordersemantics as defined in [3], [7].
Consider queues as the example. Astrict out-of-orderk-quasi
permutation consists of two restrictions:

• Restriction 1: eachdeq is allowed to return a value that
is at mostk steps away from the head node.

• Restriction 2: the first data element (in head node) must
be returned by one of the firstk deq operations.

To illustrate thestrict out-of-order definition, consider the
1-quasi queue below,where the sequentialized historyρ′ is
deq()=1,deq()=2,deq()=3.
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s2 s3s1
deq(1) deq(2) deq(3)

deq(3)

s3'

deq(2)

Original

history
…

Permutation 1…

deq(2)

s2''

deq(1)

s3''

deq(3)

Permutation 2…

Fig. 7. An example search tree for generating all1-quasi permutations of the
input sequencedeq(1);deq(2);deq(3).

History 0: deq(1) --> deq(2) --> deq(3)
Res1 Res2

History 1: deq(2) --> deq(1) --> deq(3) ok ok
History 2: deq(1) --> deq(3) --> deq(2) ok ok
History 3: deq(3) --> deq(1) --> deq(2) NO ok
History 4: deq(2) --> deq(3) --> deq(1) ok NO
History 5: deq(3) --> deq(2) --> deq(1) NO NO

The input history can be arbitrarily re-shuffled to produce five
additional histories, of which only History 1 and History 2
satisfy the above two restrictionsof the strict out-of-order1-
quasi permutation.They are the desired quasi permutations of
ρ′ whereas the others are not. In particular, History 3 violates
Restriction 1 because the firstdeq returns the value that is
two steps away from the head. History 4 violates Restriction
2 because the head value is returned by the thirddeq operation,
which is too late. History 5 violates both restrictions.

We compute the quasi permutations using a depth-first
search (DFS) of the abstract states. For the above example,
this process is illustrated in Figure 7, where the initial run is

assumed to bes1
deq(1)
−→ s2

deq(2)
−→ s3

deq(3)
−→ .

• In the initial run, we construct the state stack that holds
the initial history. Then we find the last backtrack state,
which is states2, where we can executedeq(3) instead

of deq(2). This leads to the second runs1
deq(1)
−→ s2

deq(3)
−→

s′3
deq(2)
−→ .

• In the second run, we again find the last backtrack state,
which is s1, and executedeq(2) instead ofdeq(1). This

leads to the third runs1
deq(2)
−→ s′′2

deq(1)
−→ s′′3

deq(3)
−→ .

• In the third run, we can no longer find any backtrack state.
Therefore, the procedure terminates. We cannot generate
a new run by choosingdeq(3) in state s1, because it
would violate Restriction 1. We cannot generate a new
run by choosingdeq(3) in state s′′2 either, because it
would violate Restriction 2.

An important feature of our algorithm is that it directly
constructs valid permutations while skipping the invalid ones,
as opposed to constructing all permutations and then filtering
out the invalid ones. In the running example, for instance, our
method will directly generate History 1 and History 2 from

History 0, while skipping 3, 4, and 5.

B. Elementary Data Structures

To enforce the restrictions imposed by thestrict out-of-
order semantics, we need to add some fields into each state.
In particular, we add anenabledfield into each state to help
enforce Restriction 1, and we add alatenessattribute into each
enabled event to enforce Restriction 2.

State stack: We store the sequence of states of the current run
in a doubly linked list called statestack. Executing a method
call event moves the object from one state to another state.
Each states has the following fields:

• s.enabled is the set of events that can be executed ats;
• s.select is the event executed by the current history;
• s.done is the set of events executed ats by some

previously explored permutations in the backtrack search;
• s.newly enabled is the set of events that become enabled

for the first time along the given historyρ′. The field is
initialized by the first run, and is used to compute the
s.enabled field in the subsequent runs.

Example 1: s.newly_enabled. The initial state has at most
(K + 1) events in its newlyenabled field, whereK
is the quasi factor. Every other state has at most one
event in this newlyenabled field. For the given history
deq(1);deq(2);deq(3) and quasi factor 1, we have

s1.newly enabled={deq(1),deq(2)} ≥1 events in the initial state
s2.newly enabled={deq(3)} at most one event
s3.newly enabled={ } at most one event

In other words, each event will appear in the newlyenabled
field of the state that is preciselyK steps ahead of its original
state inρ′. We will enforce Restriction 1 with the help of the
newly enabled field.

Example 2: s.enabled and s.done. For the above example,

s1.enabled={deq(1),deq(2)} s1.done={deq(1)}
s2.enabled={deq(2),deq(3)} s2.done={deq(2)}
s3.enabled={deq(3)} s3.done={deq(3)}

Both deq(1) and deq(2) are in s1.enabled, but onlydeq(1)
is in s1.done because it is executed in the current run.
Since the set (s.enabled\s.done) is not empty for boths1
and s2, we have two backtrack states. After backtrack-
ing to s2 and executingdeq(3), we create a new permu-
tation deq(1);deq(3);deq(2). Similarly, after backtracking
to s1 and executingdeq(2), we create a new permutation
deq(2);deq(1);deq(3).

For permutationdeq(2);deq(1);deq(3), the enabled and done
fields will be changed to the following:

s1.enabled={deq(1),deq(2)} s1.done={deq(1),deq(2)}
s′′
2

.enabled={deq(1),deq(3)} s′′
2

.done={deq(1)}
s′′
3

.enabled={deq(3)} s′′
3

.done={deq3}

Although (s′′2 .enabled\s′′2 .done) is not empty, we cannot create
the new permutationdeq(2);deq(3);deq(1) becausedeq(1)
would be out-of-order by two steps. We avoid generating such
permutations by leveraging the lateness attribute that is added
into every enabled event.
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Lateness attribute: Each event ins.enabled has a lateness
attribute, indicating how many steps this event is later than its
original occurrence inρ′. It represents how many steps this
event can be postponed further in the current permutation.

s[i-k] lateness(e) = -k
...
s[i].select = e lateness(e) = 0
...
s[i+k] lateness(e) = k

Example 3: Consider the example above, where evente is
executed in statesi of the given history. Fork-quasi permuta-
tions, the earliest state wheree may be executed issi−k, and
the latest state wheree may be executed issi+k. The lateness
attribute of evente in statesi−k is −k, meaning that it may
be postponed for at mostk−(−k) = 2k steps. The lateness of
e in statesi+k is k, meaning thate has reached the maximum
lateness and therefore must be executed in this state.
Must-select event:This brings us to the important notion of
must-select event. Ins.enabled, if there does not exist any
event whose lateness reachesk, all the enabled events can be
postponed for at least one more step. In this case, we can
randomly choose an event from the set (s.enabled\s.done) to
execute. If there exists an event ins.enabled whose lateness
is k, then we must execute this event in states.

Example 4: If we backtrack from the current history
deq(1),deq(2),deq(3) to states1 and then executedeq(2),
eventdeq(1) will have a lateness of 1 in states′′2 , meaning
that it has reached the maximum delay allowed. Therefore, it
has to be executed in states2.

s1.lateness={deq(1):lateness=0, deq(2):lateness=-1}
s′′
2

.lateness={deq(1):lateness=1, deq(3):lateness=-1}
s′′
3

.lateness={deq(3):lateness=0}

The initial lateness is assigned to each enabled event when
the event is added tos.enabled byfirst_run. Every time an
event is not selected for execution in the current state, it will
be inherited by the enabled field of the subsequent state. The
lateness of this event is then increased by 1.

An important observation is that, in each state, there can
be at most onemust-selectevent. This is because the first
run ρ′ is a total order of events, which gives each event a
different latenessvalue—by definition, theirexpiration times
are all different.

C. Algorithm: ConstructingK-Quasi Permutations

The pseudo code for generating quasi permutations of
history ρ′ is shown in Algorithm 2. Initializing the late-
ness attributes of enabled events is performed by Sub-
routine init_enabled_and_lateness, which is called by
first_run. The lateness attributes are then updated by
update_enabled_and_lateness.

Each call tobacktrack_run will return a new quasi per-
mutation ofρ′. Inside this subroutine, we search for the last
backtrack states in state stack. If such backtrack states
exists, we prepare the generation of a new permutation by
resetting the fields of all subsequent states ofs, while keeping

their newly enabled fields intact. Then we choose a previously
unexplored event ins.enabled to execute.

Algorithm 2 GeneratingK-quasi permutations for historyρ′.
1: first_run ( ρ′, K ) {
2: statestack← empty list;
3: for each ( eventev in the sequenceρ′ ) {
4: s← new state;
5: statestack.append(s );
6: s.select← ev;
7: s.done ← {ev};
8: init_enabled_and_lateness( s, ev,K );
9: }

10: return state stack;
11: }
12: init_enabled_and_lateness ( s, ev,K ) {
13: lateness← 0;
14: while( 1 ) {
15: s.enabled.add(〈ev,lateness〉 );
16: if ( lateness ==−k || s.prev == null ){
17: s.newly enabled.add(〈ev, lateness〉 );
18: break;
19: }
20: lateness−−;
21: s← s.prev in statestack;
22: }
23: }
24: backtrack_run ( state stack,ρ ) {
25: Let s be the last state in statestack such that
26: pick_an_enabled_event( s ) 6= null;
27: if ( suchs does not exist )
28: return null;
29: for each( state afters in state stack ){
30: resets.select,s.done, ands.enabled,
31: but keeps.newly enabled;
32: }
33: while( s 6= null ) {
34: ev ←pick_an_enabled_event ( s );
35: s.select← ev;
36: s.done← {ev};
37: s← s.next;
38: update_enabled_and_lateness( s );
39: }
40: return (sequence of selected events in statestack);
41: }
42: pick_an_enabled_event ( s ) {
43: if ( ∃〈ev, lateness〉 ∈ s.enabled && lateness = k) {
44: if ( ev 6∈ s.done ) // must-select event
45: return ev;
46: else
47: return null;
48: }
49: if ( ∃〈ev, lateness〉 ∈ s.enabled &&ev 6∈ s.done) )
50: return ev;
51: else
52: return null;
53: }
54: update_enabled_and_lateness ( s ) {
55: p← s.prev;
56: if ( s or p do not exist )
57: return ;
58: s.enabled← { };
59: for each( 〈ev, lateness〉 ∈ p.enabled &&ev 6∈ p.done){
60: s.enabled.add(〈ev, lateness−−〉 );
61: }
62: for each( 〈ev, lateness〉 ∈ s.newly enabled ){
63: s.enabled.add(〈ev, lateness〉 );
64: }
65: }

The previously unexplored event ins.enabled is chosen by
calling pick_an_enabled_event. If there exists a must-select
event ins.enabled whose lateness reachesk, then it must be
chosen. Otherwise, we choose an event from the set (s.enabled
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\s.done) arbitrarily. We useupdate_enabled_and_lateness
to fill up the events ins.enabled. For events that are inherited
from the previous state’s enabled set, we increase their lateness
by one. We iterate until the last state is reached. At this time,
we have computed a new quasi permutation ofρ′.

The complexity ofcompute_quasi_permutations()
depends on the length of the input historyρ′, denotedM ,
as well as the quasi factorK. The overall complexity is
O((1 + K)!M/(1+K)), where (1 + K)! is the number of
permutations of(1 + K) events, andM/(1 + K) is the
number of groups of size(1 +K) in a history ofM events.
In practice, this subroutine will not become a performance
bottleneck because test programs with smallM often suffice
in revealing linearizability violations. In addition, theinput
ρ′ = h|o is a project of the original historyh to each
individual object o, which further reduces the size of the
input.

D. Discussions

The real performance bottleneck in practice is due to the
potentially large number of concurrent histories that needto
be fed to our method as input, as opposed to the computational
overhead of Phases 1 and 2 within our method. The reason
why we may have a large number of concurrent histories is
because the number is exponential in the number oflow-
level concurrent operationsin the test program. Typically,
the number of these low-level operations, denotedN , can be
significantly larger thanM , the number of method calls in
the same history, because each method has to be implemented
by many low-level operations such as Load/Store over shared
memory and thread synchronizations.

In our experiments, we try to avoid the performance
bottleneck by reducing the number of concurrent histories,
primarily through the use of small test programs as input, and
advanced exploration heuristics (such as context bounding) in
the Inspect tool.

Our method is geared toward bug hunting. Whenever we
find a concurrent historyρ that is not quasi linearizable, it is
guaranteed to be a real violation.Furthermore, at this moment,
the erroneous execution trace that gives rise toρ has been
logged into a disk file by the underlying Inspect tool. The ex-
ecution trace contains all the method invocation and response
events inρ, as well as the low-level concurrent operations,
such as Load/Store operations and thread synchronizations.
Such trace can be provided to the user as debugging aid. As
an example, we will show in Section VI-D how it can help
the user diagnose a real bug found in theScalbenchmarks.

However, since our method implements the L1 and L2
checks but not the L3 check as defined in Section III, even if all
concurrent histories of the test program are quasi linearizable,
we cannot conclude that the concurrent data structure itself is
quasi linearizable.

Furthermore, when checking for quasi linearizability, our
runtime checking framework has the capability of generating
test programs (harness) that arewell-formed; that is, the
number of enq operations is equal to the number ofdeq
operations. If the test program is provided by the user, thenit

is the user’s responsibility to ensure this well-formedness. This
is important because, if the test program is not well-formed,
there may beout-of-thin-air events. Below is an example.

Thread 1 Thread 2 Hist1 Hist2 Hist3
-------- --------
enq(3) enq(5) enq(3) enq(5) enq(3)
enq(4) deq() ... ... enq(4)
... ... ... ... enq(5)
-------- -------- deq()=3 deq()=5 deq()=4

Here, the sequential specification is{Hist1,Hist2}. In both
legal sequential histories, eitherdeq()=3 or deq()=5. However,
the deq value can never be 4. This is unfortunate, because
Hist3 is 1-quasi linearizable but cannot match any of the
two legal sequential histories (Hist1 or Hist2) because it has
deq()=4. This problem can be avoided by requiring the test
program given to our method to be well-formed. For example,
by adding two moredeq calls to the end of the main thread,
we can avoid the aforementionedout-of-thin-air events.

VI. EXPERIMENTS

We have implemented our new quasi linearizability check-
ing method in a software tool based on the LLVM plat-
form for code instrumentation andInspectfor systematically
generating interleaved executions. Our tool, calledRound-
Up, can handle C/C++ code of concurrent data structures on
the Linux/PThreads platform. We have extended the original
implementation ofInspect [15], [16] by adding the support
for GNU built-in atomic functions for direct access of shared
memory, since in practice, they are frequently used in the low-
level code for implementing concurrent data structures.

We have conducted experiments on a set of concurrent data
structures [3], [5], [4], [8], [5], [7] including both standard
and quasi linearizable queues, stacks, and priority queues. For
some of these concurrent data structures, there are severalvari-
ants, each of which uses a different implementation scheme.
These benchmark examples fall into two sets.

A. Results on the First Set of Benchmarks

The characteristics of the first set of benchmark programs
are shown in Table I. The first three columns list the name of
the data structure, a short description, and the number of lines
of code. The next two columns show whether it is linearizable
and quasi linearizable. The last column provides a list of the
relevant methods.

Table II shows the results for checking standard lineariz-
ability. The first four columns show the statistics of the
test program, including the name, the number of threads
(concurrent/total), the number of method calls, and whether
linearizability violations exist.For example, 3*4+1 in thecalls
column means that one child thread issued 3 method calls, the
other child thread issued 4 method calls, and the main thread
issued 1 method call.The next two columns show the statistics
of Phase 1, consisting of the number of sequential histories
and the time for generating these sequential histories. The
last three columns show the statistics of Phase 2, consisting
of the number of concurrent histories (buggy/total), the total
number of sequentializations, and the time for checking them.
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TABLE I
THE STATISTICS OF THE BENCHMARK EXAMPLES.

Class Description LOC Linearizable Quasi-Lin Methods checked
IQueue buggy queue, deq may remove null even if not empty154 No NO enq(int), deq()
Herlihy/Wing queue correct normal queue 109 YES YES enq(int), deq()
Quasi Queue correct quasi queue 464 NO YES enq(int), deq()
Quasi Queue b1 deq removes value more than k away from head 704 NO NO enq(int), deq()
Quasi Queue b2 deq removes values that have been removed before401 NO NO enq(int), deq()
Quasi Queue b3 deq null even the queue is not empty 427 NO NO enq(int), deq()
Quasi Stack b1 pop null even if the stack is not empty 487 NO NO push(int), pop()
Quasi Stack b2 pop removes values move than k away from the tail 403 NO NO push(int), pop()
Quasi Stack linearizable, and hence quasi linearizable 403 YES YES push(int), pop()
Quasi Priority Queue implementation of quasi priority queue 508 NO YES enq(int, int), deqMin()
Quasi Priority Queue b2 deqMin removes value more than k away from head 537 NO NO enq(int, int), deqMin()

TABLE II
RESULTS OF CHECKING STANDARD LINEARIZABILITY ON CONCURRENTDATA STRUCTURES.

Test Program Phase 1 Phase 2
Class threads calls violation history time (seconds) history (buggy/total) sequentialization time (seconds)

IQueue 2/3 2*2+0 YES 3 0.1 2/6 13 0.3
Herlihy/Wing queue 2/3 2*2+0 NO 3 0.1 0/4 9 0.2
Quasi Queue 2/3 2*2+4 YES 6 0.2 16/16 61 2.5
Quasi Queue 2/3 3*3+4 YES 20 1.1 64/64 505 43.7
Quasi Queue 2/3 2*3+3 YES 10 0.4 24/32 169 8.3
Quasi Queue 2/3 3*3+2 YES 20 0.8 108/118 1033 1m23s
Quasi Queue 2/3 3*4+1 YES 35 1.6 149/198 2260 5m8s
Quasi Queue 2/3 4*4+0 YES 70 2.6 274/476 8484 37m34s
Quasi Queue b1 2/3 2*2+4 YES 6 0.3 91/91 409 17.8
Quasi Queue b2 2/3 2*2+4 YES 6 0.3 91/91 409 18.1
Quasi Queue b3 2/3 2*2+4 YES 6 0.3 141/141 653 26.9
Quasi Stack b1 2/3 2*2+4 YES 6 0.3 9/9 34 1.6
Quasi Stack b2 2/3 2*2+4 YES 6 0.3 16/16 61 2.5
Quasi Stack 2/3 2*2+4 NO 6 0.3 0/16 61 2.5
Quasi Priority Queue 2/3 2*2+4 YES 6 0.5 16/16 61 4.9
Quasi Priority Queue b2 2/3 2*2+4 YES 6 0.5 125/125 532 27.0

In all test cases, our method was able to correctly detect the
linearizability violations.

Table III shows the experimental results for checking quasi
linearizability. The first four columns show the statisticsof
the test program. The next two columns show the statistics
of Phase 1, and the last three columns show the statistics
of Phase 2, consisting of the number of concurrent histories
(buggy/total), the total number of quasi permutations, andthe
time for generating and checking them.In all test cases, we
set the quasi factor to 2 unless specified otherwise in the test
program name (e.g., qfactor=3).

Our method was able to detect all real (quasi) linearizability
violations in fairly small test programs. This is consistent with
the experience of Burckhartet al. [18] in evaluating their Line-
Up tool for checking standard (but not quasi) linearizability.
This is due to the particular application of checking the
implementation of concurrent data structures. Although the
number of method calls in the test program is small, the
underlying low-level shared memory operations can still be
many. This leads to a rich set of very subtle interactions
between the low-level memory accessing instructions. In such
cases, the buggy execution can be uncovered by checking a
test program with only a relatively small number of threads,
method calls, and context switches.

B. Experimental Results on theScalBenchmarks

We have also conducted experiments on a set of recently
released high-performance concurrent objects in theScal
suite [17]. The characteristics of this second set of benchmark
programs are shown in Table IV. The format of this table
is the same as Table I. For a more detailed description of the
individual algorithms, please refer to the original paperswhere
these concurrent data structures are published [7], [5], [6].

Table V shows our experimental results for applyingRound-
Up to this set of benchmarks. In addition to obtaining the
performance data, we have successfully detected two real
linearizability violations in theScal suite, one of which is
a known violation whereas the other is a previously unknown
programming error. In particular,sl-queueis a queue designed
for high performance applications, but it is not thread safeand
therefore is not linearizable. Note that the fact thatsl-queueis
not linearizable is known.

In contrast,k-stackis designed to be quasi linearizable, but
due to an ABA bug, the data structure implementation is not
quasi linearizable. In fact, it is not even linearizable since
the behavior may violate the standard functional specification
of a stack.(An ABA problem [2] occurs in a multithreaded
program when a memory location is read twice, has the
same values for both reads, and therefore appears to indicate
“nothing has changed.” However, another thread may have
interleaved in between the two reads, changed the value, did
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TABLE III
RESULTS OF CHECKING QUASI LINEARIZABILITY ON CONCURRENT DATA STRUCTURES.

Test Program Phase 1 Phase 2
Class threads calls violation history time (seconds) history (buggy/total) permutation time (seconds)

Quasi Queue 2/3 2*2+4 NO 6 0.2 0/16 1708 2.9
Quasi Queue 2/3 3*3+4 NO 20 1.1 0/64 73730 5m33s
Quasi Queue 2/3 2*3+3 NO 10 0.4 0/32 4732 9.6
Quasi Queue 2/3 3*3+2 NO 20 0.8 0/118 28924 1m34s
Quasi Queue 2/3 3*4+1 NO 35 1.6 0/198 63280 5m40s
Quasi Queue 2/3 4*4+0 NO 70 2.6 0/476 237552 40m56s
Quasi Queue (qfactor=3) 2/3 2*3+3 NO 10 0.4 0/32 8112 14.9
Quasi Queue (qfactor=3) 2/3 3*3+2 NO 20 0.8 0/118 49584 2m36s
Quasi Queue (qfactor=3) 2/3 3*4+1 NO 35 1.6 0/198 108480 10m15s
Quasi Queue (qfactor=3) 2/3 4*4+0 NO 70 2.6 0/476 407232 69m32s
Quasi Queue b1 2/3 2*2+4 YES 6 0.3 41/91 11452 20.1
Quasi Queue b2 2/3 2*2+4 YES 6 0.3 91/91 11452 20.2
Quasi Queue b3 2/3 2*2+4 YES 6 0.3 73/141 18284 31.0
Quasi Stack b1 2/3 2*2+4 YES 6 0.3 9/9 2108 3.5
Quasi Stack b2 2/3 2*2+4 YES 6 0.3 6/16 1708 2.8
Quasi Stack b3 2/3 2*2+4 NO 6 0.3 0/16 1708 2.8
Quasi Priority Queue 2/3 2*2+4 NO 6 0.5 0/16 1708 4.7
Quasi Priority Queue b2 2/3 2*2+4 YES 6 0.5 54/125 6384 20.0

TABLE IV
THE STATISTICS OF THESCAL [17] BENCHMARK EXAMPLES (TOTAL LOC OF Scal IS 5,973).

Class Description LOC Linearizable Quasi-Lin Methods checked
sl-queue singly-linked list based single-threaded queue 73 NO NO enq, deq
t-stack concurrent stack by R. K. Treiber 109 YES YES push, pop
ms-queue concurrent queue by M. Michael and M. Scott 250 YES YES enq, deq
rd-queue random dequeued queue by Y. Afek, G. Korland, and E. Yanovsky 162 NO YES enq, deq
bk-queue bounded k-FIFO queue by Y. Afek, G. Korland, and E. Yanovsky 263 NO YES enq, deq
ubk-queue unbounded k-FIFO queue by C.M. Kirsch, M. Lippautz, and H. Payer 259 NO YES enq, deq
k-stack k-stack by T. A. Henzinger, C. M. Kirsch, H. Payer, and A. Sokolova 337 NO NO push, pop

some work, and then changed the value back.)
Our tool is able to quickly detect the linearizability violation

in sl-queueand the quasi linearizability violation ink-stack.
We have reported the violation ink-stackto theScaldevelop-
ers, who have confirmed that it is indeed a bug.

It is worth pointing out that existing concurrency bug finding
tools such as data-race and atomicity violation detectors are
not effective for checking low-level C/C++ code that imple-
ments most of the highly concurrent data structures. These
bug detectors are designed primarily for checking application
level code. Furthermore, they are often based on the lockset
analysis and condition variable analysis. Although locks and
condition variables are widely used in writing applicationlevel
code, they are rarely used in implementing concurrent data
structures. Synchronization in concurrent data structures may
be implemented using atomic memory accesses. To the best of
our knowledge, no prior method can directly check quantitative
properties in such low-level C/C++ code.

C. Optimizations to Reduce the Runtime Overhead

To further improve the runtime performance, we have
applied the following optimizations in Phases 1 and 2, to
reduce the number of traces generated from the sequential
specificationspec(o), the setΦ of sequentializations, and the
setΨ of quasi permutations.

Specifically, our optimizations are as follows:(1) in
Phase 1, we remove fromspec(o) all identical serial histories

generated by the Inspect tool by simply comparing their textual
representations; (2) in Phase 2, we remove from the input all
identical concurrent executions fed to our method—we say
that two concurrent executions are identical if they give rise
to the same history, even though they may differ in the low-
level concurrent operations within the method calls; and (3) for
each sequentializationρ′ ∈ Φ(ρ), or each quasi permutation
ρ′′ ∈ Ψ(ρ′), we check if ρ′ or ρ′′ is identical to some
sequentialization or quasi permutation of a previously explored
concurrent history, and if the answer is yes, we skip it.

It is worth pointing out that, in our application, the length
of the sequential and concurrent execution histories are often
short. Therefore, a straightforward implementation of the
above algorithm for identifying redundant histories already
works well in practice. For example, in Table V, each exe-
cution history has at most 14 method calls (1+1+12), among
which only two method calls are executed concurrently. In
such case, the pair-wise comparison of execution historiesas
described above is fast. Specifically, compared to the cost of
the other parts of our method, e.g., loading the executable to
the main memory and performing the interleaved executions,
the time spent on comparing these histories in memory is
always negligible. This is the reason why, in Table V, we
only report the number of permutations and the total time.

Our evaluation of these optimizations on theScal bench-
marks shows that they can lead to a significant reduction
in the number of permutations and the execution time. Our
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TABLE V
RESULTS OF CHECKING QUASI LINEARIZABILITY FOR THESCAL [17] BENCHMARK EXAMPLES.

Test Program Phase 1 Phase 2
Class threads calls violation history time (seconds) history (buggy/total) permutation time (seconds)

sl-queue (enq+deq) 2/3 1*1+12 NO 2 0.38 0/2 1032 1.61
sl-queue (enq+enq) 2/3 1*1+12 YES 2 0.37 1/2 1032 1.78
sl-queue (deq+deq) 2/3 1*1+12 YES 2 0.37 4/8 5160 7.21
t-stack (push+pop) 2/3 1*1+12 NO 2 0.58 0/8 5160 7.77
t-stack (push+push) 2/3 1*1+12 NO 2 0.59 0/8 5160 7.78
t-stack (pop+pop) 2/3 1*1+12 NO 2 0.56 0/8 5160 7.63
ms-queue (enq+deq) 2/3 1*1+12 NO 2 0.76 0/3 1720 2.94
ms-queue (enq+enq) 2/3 1*1+12 NO 2 0.79 0/31 20984 32.47
ms-queue (deq+deq) 2/3 1*1+12 NO 2 0.76 0/12 7912 12.33
rd-queue (enq+deq) 2/3 1*1+12 NO 2 0.90 0/5 3096 5.97
rd-queue (enq+enq) 2/3 1*1+12 NO 2 0.91 0/31 20984 37.83
rd-queue (deq+deq) 2/3 1*1+12 NO 2 0.87 0/4 2408 7.31
bk-queue (enq+deq) 2/3 1*1+12 NO 2 1.27 0/29 19608 34.45
bk-queue (enq+enq) 2/3 1*1+12 NO 2 1.30 0/41 27864 50.98
bk-queue (deq+deq) 2/3 1*1+12 NO 2 1.22 0/24 16168 28.11
ubk-queue (enq+deq) 2/3 1*1+12 NO 2 2.42 0/21 14104 35.71
ubk-queue (enq+enq) 2/3 1*1+12 NO 2 1.86 0/41 27864 61.94
ubk-queue (deq+deq) 2/3 1*1+12 NO 2 1.84 0/52 35432 68.21
k-stack (push+pop) 2/3 1*1+12 YES 2 1.55 11/69 47128 1m29s
k-stack (push+push) 2/3 1*1+12 NO 2 1.69 0/12 7192 15.13
k-stack (pop+pop) 2/3 1*1+12 NO 2 1.62 0/8 5160 9.46
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Fig. 8. Results: Evaluating the impact of optimizations on the performance
for Scal benchmarks [17]. We compare thenumber of quasi permutations
generated by our method with optimizations (y-axis) and without optimiza-
tions (x-axis). Each + represents a test case. Test cases below the diagonal
line are the winning cases for our method with optimizations.

experimental results are shown in the scatter plots in Figure 8
and 9, which compare the number of permutations and the
total time of our method with and without the optimizations.
Note that the concrete time and the number of permutations,
with optimizations, have already been reported in the last
two columns of Table V.The x-axis shows the number of
permutations and the execution time without these optimiza-
tions, whereas they-axis shows the number of permutations
and the execution time with these optimizations. Here, points
below the red diagonal lines are the winning cases for the
optimizations. Note that both thex-axis and they-axis are in
logarithmic scale.
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Fig. 9. Results: Evaluating the impact of optimizations on the performance
for Scalbenchmarks [17]. We compare theexecution time (in seconds)of our
method with optimizations (y-axis) and without optimizations (x-axis). Each
+ represents a test case. Test cases below the diagonal line are the winning
cases for our method with optimizations.

D. Generating Diagnosis Information

Our Round-Uptool guarantees that all the reported (quasi)
linearizability violations are real violations; that is, they can
appear in the actual program execution.To help the developer
diagnose the reported violation, our tool leverages Inspect,
the underlying concurrency testing tool, to generate a detailed
execution trace for each concurrent history. When a current
history ρ is proved to be erroneous, i.e., neither linearizable
nor quasi linearizable, the detailed execution trace will be
provided to the user as debugging aid. In this execution
trace, we have recorded not only the method invocation and
response events inρ but also the low-level operations by each
thread, including Load/Store instructions over shared memory
and thread synchronizations. For more information on how
such execution trace is generated, please refer to the Inspect
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tool [15], [16].
In terms of the ABA bug that we have detected ink-stack,

for example, our tool shows that the violation occurs when
one thread executes thepush operation while another thread
executes thepop operation concurrently. Due to erroneous
thread interleaving, it is possible for the same data item to
be added to the stack twice, despite the fact that thepush

operation is executed only once. In the remainder of this
subsection, we shall explain this bug in more details.

First, we show in Algorithm 3 the simplified pseudo code
of the push and pop methods ofk-stackas implemented in
the Scal suite. Thepush() method starts by putting the data
item into the current segment and then trying to commit, by
checking if the flagsegment→delete is 0. Thepop() method,
which may be executed by another thread concurrently with
push(), starts by setting the flagsegment→delete to 1 and
then trying to remove the segment if it is empty.

The bug happens when the top segment is empty, threadT1
is trying to push a data item onto the stack, and at the same
time, threadT2 is trying to pop a data item from the stack.
The erroneous execution trace is summarized as follows:

Thread 1 Thread 2
-------- --------

Pop:L10-12
Push:L3-L5

try_remove_segment:L23
Committed:L17

try_remove_segment:L24-L25
Committed:L18-L19
Push:L3-L6
-------- --------

Algorithm 3 The simplified pseudo code ofk-stackin Scal
1: push(T item)
2: {
3: while ( TRUE ) {
4: put item into the segment;
5: if ( committed() ) return TRUE;
6: }
7: }
8: pop()
9: {

10: while ( TRUE ) {
11: try to find an item in the segment;
12: if (not found)try_remove_segment();
13: }
14: }
15: committed()
16: {
17: if ( segment→delete==0 )return TRUE;
18: else if ( segment→delete==1 ){...}
19: return FALSE;
20: }
21: try_remove_segment()
22: {
23: segment→delete=1;
24: if ( is empty(segment) ){...}
25: else segment→delete=0;
26: }

From the above debugging information reported by ourRound-
Up tool, we can explain the erroneous thread interleaving as
follows:

• Step 1: Since the stack is empty, inside methodpop,
threadT2 cannot find any data item in the segment, and

therefore invokes functiontry_remove_segment() to try
to remove the segment;

• Step 2: Inside methodpush, threadT1 pushes a data item
into the segment, and then calls functioncommitted() to
make sure the data item is successfully added by waiting
committed() to return true;

• Step 3: Inside functiontry_remove_segment(), thread
T2 marks the top segment asdeleted;

• Step 4: Inside functioncommitted(), threadT1 fails the
condition in Line 17;

• Step 5: Inside functiontry_remove_segment(), thread
T2 checks the segment again, and notices that the segment
is not empty. Therefore, threadT2 sets the top segment
back tonot deleted;

• Step 6: Inside functioncommitted(), threadT1 fails the
condition in Line 18 and returns false. Therefore, method
push returns to the beginning of the while loop, and
pushes the same data item into the segment again.

As we can see, this bug requires complex interactions between
the two threads to manifest and therefore is difficult to detect
manually. However, it can be easily detected by ourRound-
Up tool, since our tool has the capability of systematically
enumerating possible thread interleavings and then checking
each of them for (quasi) linearizability violations.

VII. R ELATED WORK

Quasi linearizability was first introduced by Afeket al. [3]
as a way to trade off correctness for better runtime per-
formance while implementing concurrent queues for highly
parallel applications. Since then, the idea of quantitatively
relaxing the consistency requirement of linearizability to im-
prove runtime performance have been used in the design of
various concurrent data structures [8], [5], [6], [4]. Morere-
cently, Henzingeret al. [7] generalized the idea by proposing a
systematic and formal framework for obtaining new concurrent
data structures by quantitatively relaxing existing ones.

Round-Upis the first runtime verification method for de-
tecting quasi linearizability violations in the source code
implementation of concurrent data structures. This paper is an
extended version of our recent work [19] where we proposed
the method for the first time. In this extended version, we
have provided a more detailed description of the algorithms
and presented more experimental results.

A closely related work is a model checking based method
that we proposed [20], [21] for verifying quantitative re-
laxations of linearizability inmodelsof concurrent systems.
However, the method was designed for statically verifying
finite-state models, not for dynamically checking the C/C++
code of concurrent data structure implementations. Although
the Line-Up tool by Burckhardtet al. [18] also has the
capability of dynamically checking the code of concurrent
data structures, it can only check linearizability but notquasi
linearizability. In contrast, the main contribution of this paper
is proposing a new method for checking quasi linearizability.

Besides Line-Up [18], there is a large body of work
on statically verifying standard linearizability properties. For
example, Liu et al. [11] verify standard linearizability by
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proving that an implementation model refines a specification
model. Vechev et al. [12] use the SPIN model checker to
verify linearizability in a Promela model. Cerný et al. [13]
use automated abstractions together with model checking to
verify linearizability properties in Java programs. Thereare
also techniques for verifiying linearizability by constructing
mechanical proofs, often with manual intervention [9], [10],
[22]. However, none of these methods can check quantitative
relaxations of linearizability.

There are also static and runtime verification methods for
other types of consistency conditions, including sequential
consistency [23], quiescent consistency [24], and eventual
consistency [25]. Some of these consistency conditions, in
principle, may be used during software testing and verifica-
tion to ensure the correctness of concurrent data structures.
However, they are not as widely used as linearizability in
this application domain. Furthermore, they do not have the
same type of quantitative properties and the corresponding
verification challenges as inquasi linearizability.

For checking application level code, which has significantly
different characteristics from the low-level code that imple-
ments concurrent data structures,serializability andatomicity
are the two frequently used correctness criteria. In the litera-
ture, there is a large body of work on detecting serializability
and atomicity violations (e.g. [26], [27], [28] and [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48]). It is worth pointing
out that these bug finding methods differ from our method
in that they are checking for different types of properties.In
practice, atomicity and serializability have been used primarily
at the shared memory read/write instruction level, whereas
linearizability has been used primarily at the method API level.
Furthermore, existing tools for detecting serializability and
atomicity violations do not check for quantitative properties.

VIII. C ONCLUSIONS

We have presented a new algorithm for runtime verifica-
tion of standard and quasi linearizability in concurrent data
structures. Our method works directly on the C/C++ code
and is fully automated, without requiring the user to write
functional specifications or to annotate linearization points in
the code. It also guarantees that all the reported violations
are real violations. We have implemented the new algorithm
in a software tool calledRound-Up. Our experimental eval-
uation shows thatRound-Upis effective in detecting quasi
linearizability violations and in generating informationfor
error diagnosis.
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