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Abstract—We propose a new method for runtime checking ~ Quasi linearizability [3] is a quantitative relaxation of
of a relaxed consistency property calledquasi linearizability for  |inearizability that has attracted a lot of attention in @Bt
concurrent data structures. Quasi linearizability generdizes the years [4], [5], [6], [7], [8]. For many highly parallel appli

standard notion of linearizability by introducing nondeterminism fi the standard noti £ li izability often i
into the parallel computations quantitatively and then exgoiting cations, the Standard notion of linearizability often 1rapse

such nondeterminism to improve the runtime performance. Unnecessary restrictions on the implementation, thereag-|
However, ensuring the quantitative aspects of this correctess ing to severe performance bottlenecks. Quasi lineariigbil
condition in the low-level code of the concurrent data struture  has the advantage of preserving the intuition of standard
implementation is a difficult task. Our runtime verification |inearizability while providing some additional flexitiji in
method is the first fully automated method for checking quasi - . .
linearizability in the C/C++ code of concurrent data structures. the implementation. For example, the task queue used in '.[he
It guarantees that all the reported quasi linearizability violations ~ Scheduler of a thread pool does not need to follow the strict
manifested by the concurrent executions are real violatios. We FIFO order. That is, one can use a relaxed queue that allows
have implemented our method in a software tool based on the some tasks to be overtaken occasionally if such relaxation
LLVM compiler and a systematic concurrency testing tool caled 0445 to superior runtime performance. Similarly, coreutr
Inspect. Our experimental evaluation shows that the new méiod .
is effective in detecting quasi linearizability violatiors in the data str.uctures used for web C?‘Che qeed not fO!IOW the strict
source code implementations of concurrent data structures semantics of the standard versions, since occasionaliinget

. e R N the stale data is acceptable. In distributed systems, auaniq

Index Terms—Runtime verification, linearizability, serializabil- . A
ity, atomicity, relaxed consistency, systematic concurrecy testing, identifier (id) generator does not need to be a perfect counte
partial order reduction because to avoid becoming a performance bottleneck, it is
often acceptable for the ids to be out of order occasionally,

. INTRODUCTION as long as it happens within a bounded time frame. Quasi

Concurrent data structures are the foundation of many mufnearizability allows the concurrent objects to have such
core and high-performance software systems. By providif? casional deviations from the standard semantics in exggha
a cost-effective way to reduce the memory contention a4 higher performance.
increase the scalability, they have found many application While quasi Ilne_zanzable concurrent data structures cam ha
ranging from embedded computing to distributed systemis sygemendous runtime performance advantages, ensuring the
as the cloud. However, implementing concurrent data stryguantitative aspects of this correctness condition in ttaa
tures is not an easy task due to the subtle interactions of loiPlémentation is not an easy task. In this paper, we propose
level concurrent operations and the often astronomicatigyn the first fully automated runtime verification method, cdlle
thread interleavings. In practice, even a few hundred lisfes Round-Up for checking quasi linearizability violations of

highly concurrent C/C++ code can pose severe challenges fgfcurrent data structures. To the best of our knowledger, pr
testing and debugging. to Round-Up there does not exist any method for checking,

Linearizability [1], [2] is thede factocorrectness condition for €xample, theieq operation of a relaxed queue is not over-
for implementing concurrent data structures. It requitest t taken by otherdeq operations for more thak times. Most
every interleaved execution of the methods of a concurrient &f the existing concurrency bug detection methods focus on
ject to be equivalent, in some sense, to a sequential epacufietecting simple bug patterns such as deadlocks, datasrace

of these methods. This is extremely useful as a correctn@§¢l atomicity violations, as opposed to quantitative prope

condition for application developers because, as long as fRanifested inquasilinearizability.

program is correct while running in the sequential mode Our work also differs from the large body of work on
using the standard (sequential) data structure, switcttng c_hecklng standard I|near|za_b|llty, \{vh_lch is not a quantita
concurrent version of the same data structure would notgghariive Property. Broadly speaking, existing methods for éhec
the program behavior. Although being linearizable alonesdo"9 standar_dllneanzablhty fall into three groups. The f|rst.
not guarantee correctness of the program, not satisfying $/0UP consists of methods based on constructing mechanical

linearizability requirement almost always indicates ttrae Proofs [9], [10], which typically require significant usem-i
implementation is buggy. tervention. The second group consists of automated methods
‘ based on techniques such as model checking [11], [12], [13],
L. Zhang, A. Chattopadhyay, and C. Wang are with the Bradlepa- \yhjch work only on finite-state models or abstractions of the
ment of Electrical and Computer Engineering, Virginia Rethnic Institute | d Th hird .
and State University (Virginia Tech), Blacksburg, VA 24081SA e-mail; actual concurrent data structures. The third group cansist

chaowang@vt.edu. of runtime verification tools that can directly check the im-



plementation at the source-code level, but only for stashdar Thread I: Thread 2: Thread 3: Timeline:

linearizability. | ‘ ‘

In contrast, Round-Upis the first runtime verification oenq(l) \ \
method for checking quasi linearizability in the source eod 0.enq(2) \ \ \
implementations of concurrent data structures. It is fallyo- \ ‘ |
mated in that the method does not require the user to provide : o.enq(4) }
functional specifications or to annotate the linearizapomts | 0.enq(3) 0.deq() ‘
in the code. It takes the source code of a concurrent object |
a test progranP that uses, and a quasi factoK as input, o.deq() \ \ |
and returns eithetrue or false as output. It also guarantees to \ | |
report only real linearizability violations. o-deq() ! } |

We have implemented the method in a software tool based 0.deq() } ‘ }
on the LLVM compiler [14] and a systematic concurrency ! v v v

testing tool called Inspect [15], [16]. Our method can handl

C/C++ programs that are written using the POSIX threads afRid- 1. A 3-threaded program that uses objectThread 1 starts by adding

GNU built-in atomic functions. Our experimental evaluatio Y2!ues 1 and 2 to the quebefore creating two child threads. Then it waits
. for the child threads to terminate before removing anotheeet data items.

of the tool on a large set of concurrent data structure impl8ereenq(3) runs concurrently wittenq( 4) anddeq() in Thread 3.

mentations shows that the new method is effective in detgcti

both standard and quasi linearizability violations. Faaraple,

we have found several real implementation bugs in Sical History 1. History 2. History 3: Timeline:

suite [17], which is an open-source package that implements

some recently published concurrent data structures. The bu

that we found in theScal benchmarks have been confirmed 0.enq(2) 0.enq(2) 0.enq(2)

by the developers.

To sum up, this paper makes the following contributions:

o We propose the first method for runtime checking of quasi 0.enq(4) 0.enq(3) 0.deq()=1
linearizability in the source-code implementation of low-
level concurrent data structures. The new method is fully
automated and can guarantee that all the reported quasi
linearizability violations are real violations.

o We have implemented the new method in a software tool
based on LLVM and Inspect and evaluated the tool on o.deq()=4 | o0.deq()=3 0.deq()=3
the real C/C++ code of a large set of concurrent data
structures. The results demonstrate that the new method
IS. effgctlve in detecting standard and quasi IIr“:"anza,omFig. 2. The set oflegal sequential historiegenerated by the program in
violations. Figure 1. These legal sequential histories form shquential specification

The remainder of this paper is organized as follows. We

provide a few motivating examples in Section Il and explain
the main technical challenges in checking quasi lineaiiigab ~ If the time interval ofenq(3), which starts at the method’s
We establish notation in Section Ill and then present theadive invocation and ends at its response, overlaps with the time
algorithm in Section IV. We present the detailed algoritton f intervals of enq(4) and deq(), the execution is no longer
checking quasi linearizability in Section V. Our experirtadn sequential. In this case, the interleaved execution isdadl
results are presented in Sections V1. We review related workconcurrent history When the implementation of the queue is
Section VII, and finally give our conclusions in Section VIl linearizable, no matter how the instructions eofq(3) inter-
leave with the instructions afnq(4) anddeq(), the external
Il. MOTIVATING EXAMPLES behavior of the queue would remain the same. We say that
In this section, we illustrate the standard and quasi lithe queue idinearizableif the sequence odeq values of any
earizability properties and outline the technical chajlemin concurrent historymatches one of the three legal sequential
checking such properties. Figure 1 shows a multithreadbi$tories in Figure 2. On the other hand, if the sequence of
program that invokes thenq and deq methods of a queue, deq values is 3,2,1,4 in a concurrent history, for example, we
whereenq(i) adds data item to the end of the queue andsay that the concurrent history has a linearizability \tiola,
deq removes the data item from the head. If Thread 2 executascause the object no longer behaves like a FIFO queue.
enq(3) atomically, i.e., without interference from Thread 3, However, being linearizable often means that the imple-
there will be three interleaved executions of the methodsentation has significant performance overhead, for exampl
all of which behave like a single-threaded execution. Thehen it is used by a large number of concurrent threads.
sequential histories, shown in Figure 2, satisfy the stahddor a quasi linearizable queue, in contrast, it is acceptabl
FIFO semantics of the queue. Therefore, we call thegal to have thedeq values being out of order occasionally, if
sequential histories such relaxation of the standard FIFO semantics can help

o.enq(1) o.enq(1l) o.enq(1)

o.enq(3) o.enq(4) o.enq(4)
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Fig. 3. An example implementation df-quasi linearizablequeue, where Fig. 4. An alternative implementation dfquasi linearizablequeue, which
each of the linked list item is a segment that holds two damst The first is based on the random-dequeued queue. Thedesgt randomly returns a
deq randomly returns a value from the gt 2} and the secondeq returns  value from{1,2} and the secondeq returns the remaining one. Then the
the remaining one. Then the thicteq randomly returns a value from the setthird deq randomly returns a value from the new windd#, 4} and the
{3, 4} and the fourthdeq returns the remaining one. fourth deq returns the remaining one.

improve the performance. For example, instead of using aThe above example demonstrates the need for a new verifi-

standard linked list to implement the queue, one may usation method that can help detect violations of the quatinté

a linked list of 2-cell segments to implement the 1l-quagiroperties inquasi linearizable concurrent data structures.

linearizable queue (Figure 3). In this case, teq operation Unfortunately, existing concurrency bug checking toolsuf®

may remove any of the two data items in the head segment. Bymarily on simple bug patterns such as deadlocks and data-

using randomization, it is possible for two threads to reenovaces. They are not well suited for checking quantitative

different data items from the head simultaneously withoptoperties in the low-level code that implements concurren

introducing memory contention. data structures. To the best of our knowledge, the method
Assume that the relaxed queue contains four values 1,2,Bréposed in this paper is the first runtime verification mdtho

initially. The first twodeq operations would retrieve either 1,2for detecting quasi linearizability violations in the soarcode

or 2,1, and the next twdeq operations would retrieve eitherof concurrent data structures.

3,4 or 4,3. Together, there are four possible combinatiens a

shown in Figure 3. Among then¥/1-a is linearizable. The 1. PRELIMINARIES

other three are not linearizable, but they are considered as

quasi linearizablemeaning thatieq values in these concurrent’ Linéarizability

histories are out-of-order by at most one step. We follow the notation in [1], [2] to define distory as
However, implementing such quasi linearizable concurreatsequence of events, denoted= ejes...e,, where each

data structures is a difficult task. Subtle bugs can be intted event is either a method invocation or a method response for

during both the design phase and the implementation phaae.object.When there are multiple objects involved in the

Consider an alternative way of implementing the 1-quabistory i, we usep = hlo to denote the projection aof to

linearizable queue as illustrated in Figure 4, where thetfirs  the objecto, which results in a subsequence of events related

data items are grouped into a virtual windowdéq operation only to this objectWhen there are multiple threads, lefl"

may retrieve any of the first 2 data items from the head baséenote the projection of history to thread7’, which is the

on randomization. Furthermore, only after both data items subsequence of events of this thread. Two histosiesd o’

the current window are removed, will thieq operation move are equivalent, denoted~ ', if and only if p|T; = p/|T; for

on to retrieve data items in the next window. The resultingjl threadT;, where: = 1,..., k. Therefore, two equivalent
behavior of this implementation should be identical to thiat histories have the same set of events, but the events may be
the segmented queue. arranged in different orders.

However, a subtle bug would appear if one ignores the useA sequential historys one that starts with a method invo-
of thevirtual window For example, ileq always returns one cation, and each method invocation is followed immediately
of the first two data items in the current queue, althouddy the matching response; in other words, no two method
it appears to be correct, the implementation would not wall intervals are overlapping. Otherwise, the historya#iecl
considered as 1-quasi linearizable. In this case, it isipless a concurrent history Let <, be the precedence relation of
for some data item to be over-taken indefinitely, theret®vents in the history. Let p[e] be the index of the evenrtin
making the data structure unsuitable for applications whep. For two eventg; andes, we say thak; <, ep if and only
a 1-quasi queue is desired. For example, if every timaithe if ple1] < plea].
operation removethe second data item in the lisive would
get a sequence akq values as follows: 2,3,4,..., where value Definition 1: A sequentializatiorof a concurrent history
1 is left in the queue indefinitely. is a sequential history’ such that (1)’ ~ p, meaning that



they share the same set of events, and/@)e; : (e; <, ;) Definition 4: A concurrent history is quasi linearizable [3]

implies (e; <, ¢;). That is, the non-overlapping method callsvith respect to a sequential specificatiopec(o) and quasi

in p retain their execution order ipf, whereas the overlappingfactor Q, iff p has a sequentializatiosi such that,

method calls inp may take effect in any order ip'. « either o’ € spec(o), meaning thap is linearizable and
A sequential specificationf objecto, denotedspec(o), is hence is also quasi linearizable, or

the set of allegal sequential histories — they are histories that , there exists a permutatigsi’ of the sequentializatiop’

conform to the semantics of the object. For example, a legal sych that

sequential history of a queue is one in which all #h/ deq — o € spec(o); and

values follow the FIFO order. — A(p)d, p'ld) < Qo(d) for all subsetd € D.

Definition 2: A concurrent historyp is linearizable with In other words,s’ needs to be a legal sequential history by

Lespect toa se_ql_Jen'an/spemﬂcansyﬁfzc(o) if and only if it itself or be within a bounded distance from a legal sequentia
as a sequentializatiop’ such thatp’ € spec(o). In other history 5"

words, as long as the concurrent histprgan be mapped to at From now on, given a sequential histos}; we call & —
least one legal sequential histgsye spec(o), it is considered (0" | A(pld, p"|d ) < Qud) foralld € D } the set of

as linearizable. . . ,
quasi-permutationsf p’.
Quasi linearizability is compositional in that a histohy

B. Quasi Linearizability is quasi linearizable if and only if subhistofyjo, for each
The notion of quasi linearizability relies on the permudati Objecto, is quasi linearizable. This allows us to check quasi
distance between two sequential histories. A'et ¢/¢) ... ¢! linearizability on each individual object in isolation, igh

be a permutation of = ejes...e,. Let Ap,p') be the red_uces th_e comput_a.tional overhead. Furthermore,th@@t@n
distance betweepand,’ defined asnaz.c,{ |ple] —p'[¢]| }. hotion of linearizability is subsumed by quasi lineariziypi
We useple] andp’[¢] to denote the index of eventin p andy’, With Qo : D — 0.

respectively. Therefore)( p, p’ ) is the maximum distance

that some event ip has to travel to its new position ipl. C. Checking (Quasi) Linearizability

Quasi linearizability is often defined on a subset of the
object's methods. LetDomain(o) be the set of all op-
erations of objecto. Let d C Domain(o) be a subset. i ) o .
Let Powerset(Domain(o)) be the set of all subsets of ° L1: check if a concurrent history is linearizable:
Domain (o). Let D C Powerset(Domain(o)) be a subset of
the powerset.

Definition 3: Thequasi-linearization factofor quasi factor)  « L2: check if a concurrent progratf is linearizable:
for a concurrent object is a function@, : D — N, where
D C Powerset(Domain(o)) and N is the set of natural
numbers. « L3: check if a concurrent object is linearizable:

For example, a queue wheg¢eq operations always follow
the FIFO order, buteq values may be out-of-order by at most ¥ test programP that uses objeat: P is linearizable.
K steps, can be specified as follows:

There are at least three levels where one can check the
(quasi) linearizability property.

3 sequentialization’ of history p: p’ € spec(0).

v concurrent history of P: p is linearizable.

L3 may be regarded as the full-fledged verification of the

Deng = { (0. enq(z),void) | z € X } concurrent object, whereas L1 and L2 may be regarded as
Dgeq = { (0. deq(),z) [z € X } runtime bug detection. In this paper, we focus primarily on
Qqueue(Deng) = 0 the L1 and L2 checks. That is, given a test progr&m
Qqueve(Daeq) = K that uses the concurrent objegtwe systematically generate

the set of concurrent histories df and then check if all
of these concurrent histories are (quasi) linearizabler Ou
main contribution is to propose a new algorithm for deciding
whether a concurrent histopy is quasi linearizable.

Here, (0. enq(z), void) represents the invocation of enq(x)
and the return valueoid, wherex € X is the data value
added to the queue. Similarly. deq(), z) represents the in-
vocation ofo. deq() and the return value. Qqueue(Denq) = 0
means that thenq events follow the standard FIFO order.
Qqueve(Daeq) = K means that theleq events are allowed
to be out-of-order by at mosk’ steps.Such relaxed queue The overall algorithm for checking quasi linearizability
can be useful in producer-consumer applications, for eXampconsists of two phases (see Figure 5). In Phase 1, we systemat
when data are enqueued by a single producer and dequeuedtaly execute the test programtogether with a standard data
multiple consumers. By relaxing the ordering of the deques&ucture implementation to construct a sequential sjgadifin
operations alone, we allow at moAt consumers to retrieve spec(o), which consists of all the legal sequential histories.
data from the queue simultaneously, without any memohy Phase 2, we systematically execute the test progfam
contention. The relaxed semantics allows more freedomdn ttogether with the concurrent data structure implememnatio
implementation of the concurrent queue, thereby leading aod for each concurrent histopy check whethep is quasi
significant performance improvement [4], [8]. linearizable.

IV. OVERALL ALGORITHM



For widely used data structures such as queues, stacks, and P € spec(0), thenp is quasi linearizable.
priority queues, a sequential version may serve as the golde — Otherwise,p is not quasi linearizable and hence not
model in Phase 1. Alternatively, the user may use a spedyfical linearizable either.

configured concurrent data structure as the golden model, . The pseudocode for checking quasi linearizability is shown

by setting the quasi factor of a relaxed queue implememtatigy Algorithm 1, which takes a concurrent histopy and a

to O, which effectively turns it into a normal queue. quasi factor K as input and returns either TRUE (quasi
In Phase 1, we use a systematic concurrency testing téinkarizable) or FALSE (not quasi linearizabléor ease of

called Inspect [15], [16] to compute all the legal sequéntipresentation, we assume th@,(d) = K for all subsets

histories. Given a multithreaded C/C++ program and fixed dal € Powerset(Domain (o)), where K is an integer constant.

input, Inspect can be used to systematically generate a pghe main challenge in Algorithm 1 is to generate the &et

sible thread interleavings of the program under the datatinpof sequentializations of the given histopyand the set of

In order to use Inspect in Phase 1, we have modified Inspegttasi permutations of eachl € ®. The first step will be

to automatically wrap up every method call of a shared objeskplained in the remainder of this section. The second step,

o in a lock/unlock pair. For example, method calleng()  which is significantly more involved, will be explained ineth

becomed ock(1k); 0. enq();unl ock(l k), where we assign a next section.

lock Ik to each objecb to ensure that context switches happen

only at the method call boundary. In other words, all methd¥gorithm 1 Checking the quasi linearizability of the concur-

calls of object are executed serially. Furthermore, Inspect cdfNt historyp with respect to the quasi factdt.

guarantee that all the possible sequential histories sfftin ; check_quasi _linearizability (p, K)

are generated/e leverage thestegal sequential historie®d 5. ° 4 . conpute_sequentiali zati ons(p);

construct the sequential specificatigpec(o) of the objecto.  4:  for each (o' € @) {

For any given test progran®, the sequential specification 5 if (p" € spec(o) ) retum TRUE;
. . . . 6: ¥ «+ conput e_quasi _pernutations(p’, K ),
spec(o) is represented as the set of all legal sequential historigs for each ( p" € W ) {
of the test progran®. We focus on checking the linearizability s: it (p” € spec(o) ) return TRUE;
of each individual concurrent object without loss of getigra 9 }

because linearizability is compositional in that an exetut ;1. ;oum FALSE:
history is linearizable with respect to multiple objectstifs 12: }

linearizable with respect to each individual object. 13: conput e_sequenti al i zations (p)

. 14:
In Phase 2, we use Inspect again to compute the setlg;f{ @« {p);

concurrent histories of the same test program. Howeves, thb:  while ( 3 a concurrent historyg € @ ) {

time, we allow the instructions within the method bodies’: '-etﬁo :if“i ”‘r’é;;"?rﬁ/re;?plrﬁsrss‘h
to interleave freely. This can be accomplished by invoking: Z; <—£inv; resp; i nvf éresp, j o
Inspect in its default mode, without adding the aforemergib 20: @ 2U{p1,p2} \ {po};

lock/unlock pairs. In addition to handling the POSIX threal 1 E’etum o

functions such as mutex lock/unlock and signal/wait, weehays: }
extended Inspect to support the set of GNU built-in funcdior?4: conput e_quasi _pernutations (o', K )
for atomic memory access, which are frequently used ﬁ { v )

practice for implementing concurrent data structurescSime 57 statestack < f i rst_run(p,K);

use LLVM as the front-end for code instrumentation, it mear#8:  while ( TRUE ) {

. . . . /7 / 0\
that we treat LLVM atomic instructions such aspxchg gg; if;(;,bzagkr:ur”a)c'b‘é;‘;_”(State—StaCkvP )i
and at oni crmw similar to shared variable write instructionsg;. U U ) ’

Here, cnpxchg refers to the atomic compare-and-exchang®: }
instruction, ancht oni cr mw refers to the atomic read-modify-gif ) reurm ¥
write instruction.During Phase 2, Inspect will interleave them—
systematically while generating the concurrent histories _ _ _
Our core algorithm for checking whether a concurrent W& now explain the detailed algorithm for comput-
history p is quasi linearizable is invoked in Phase 2. ing the set® of sequentializations for the given his-
tory p. The computation is carried out by Subrou-

- For each (_:O”(_:urrent histony, W_e_(?ompUte the seb of jne conput e_sequenti al i zati ons(p). Let a history py =
sequentializationsf p (see Definition 1). . . Cpinviinvs ¢ resp, ¥ resps ... wherep, ¢ andy are arbi-

o If any p’ € © matches a legal sequential history inrary subsequences anv1, i nv» are the invocation events of
spec(o), we conclude thap is linearizable and therefore ihe first two overlapping method calls. We will replaggin ®
is also quasi linearizable. with the new historieg; andp. In other words, for any two

o Otherwise, for ea_ch sequen_t|allzat|p(n_e ®, we compute ethod call pairsi nv;, resp;) and (i nv;, resp;) in p, if they
the setl of quasi-permutationsf o’ with respect to the 44 not overlap in time, meaning that eithessp; <, inv; or
given quasi factor, which defines the distance bew‘féenrespj <, inv;, we will keep this execution order. But if they
and eacty” € ¥ (see Definition 4): overlap in time, we will generate two new histories, where on

— If there exists a quasi permutatipfi of p’ such that hasresp; <, i nv; and the other hasesp,; <, i nv;.




sequential specification For eachy”, check if

spec(o) it belongs tospec(o)
| deterministic
Phase 1 | FlFoqueve | o L L
(golden model)
concurrent histories for eachp, generate all For eachy/, generate all
{r} sequentializationgp’} quasi permutation$p”}

BT 22w (] m

Fig. 5. The overall flow of our new quasi linearizability ckew algorithm.

input to our methodp = h|o, is a subsequence of the original
ol T . history projected to the objeot thereby consisting of only the
:| events related to objeet. Since linearizability is inherently
resp2

History 0 — History 1 History 2

—inv2 compositional, we can check it for each individual object in
isolation.

inv2 inv1 I: After computing the se® of sequentializations, we check if

respl b
respl b

V3 e inv3 ——

anyp’ € ® is a legal sequential history, as shown at Line 4 in
s Algorithm 1. According to Definition 1, as long as one sequen-
I: tializationp’ € @ is a legal sequential history,is linearizable,
which means that it is also quasi linearizable. Otherwjiss,
not linearizable (but may still be quasi linearizable).

respl

resp3 b resp3 be—

= resp2 resp3

resp2

V. CHECKING FORQUASI LINEARIZABILITY

Fig. 6. Example: Com_pu_tingequen_tialization$)f a gi\{en concurrent history To check whether a sequentializatiop{ c & is
by repeatedly sequentializing the first two overlapping hodtcalls denoted . . . . .
by (i nvi, respl) and(inv2,resp2). quasi linearizable, we need to invoke Subroutine

comput e_quasi _per mut at i ons(p’, K). As shown in
Algorithm 1, the subroutine consists of two steps. In
Example. Consider the history in Figure 6 (left). The first twothe first step,first_run is invoked to construct a doubly

overlapping calls start withnv; andi nva, respectively. linked list to hold the sequence of states connected by svent
« First, we construct a new history whefenvy,resp;) in o/, denotedstate_stack: s1 —» sy — ...s,, —. Each
is moved ahead ofi nvo,resps). This is straightforward states;, wherei = 1,...,n, represents an abstract state of

because, by the time we identifywv; andinv,, we can the objecto. Subroutinefirst_run also fills up the fields
continue to traverse the event sequence toffisg, in po  Of each state with the information needed later to generate
and then move it ahead of eveniv,. Since the resulting the quasi permutations. In the second step, we generate
H story 1 still has overlapping method calls, we repeaguasi permutations op’ € W, one at a time, by calling
the process in the next iteration. backt rack_run.
« Second, we construct a new history by moving _ . _
(i nva, resps) ahead ofi nvy, resp; ). This is a little more A. Example: Constructing Quasi Permutations
involved because there can be many other method callsSVe generate the quasi permutations by reshuffling the
of ThreadT; that are executed betweenv, andresp,. events inp’ to form new histories. More specifically, we
We take all these events betweet; andresps, and compute all possible permutations @f denoted{p”}, such
move them afteresp,. In this example, the new historythat the distance betweer and p” is bounded by the quasi
iS History 2. factor K. Our method for constructing the quasi permutations
The complexity of conpute_sequenti al i zations(p) de- follows thestrict out-of-ordersemantics as defined in [3], [7].

pends on the length of the input histopy as well as the Consider queues as the examplestfict out-of-orderk-quasi
number of overlapping method calls. Lef denote the length permutation consists of two restrictions:

of the history p and L denote the number of overlapping e Restriction 1: eachdeq is allowed to return a value that
method calls (wherd. < M). The complexity for computing is at mostk steps away from the head node.

all sequentializations gf is O(M x 2%) in the worst case. In  « Restriction 2: the first data element (in head node) must
practice, however, this subroutine will not become a perfor  be returned by one of the firtdeq operations.

mance bottleneck for two reasons. First, to expose linabiliz To illustrate thestrict out-of-order definition, consider the
ity violations, small test programs with few concurrenthwet 1-quasi queue belowyhere the sequentialized histopy is
calls often suffice, which means th&f is small. Second, the deq() =1, deq() =2, deq() =3.



History 0, while skipping 3, 4, and 5.

ﬂ/sl\s deq(1) S os2 | deq(2) >I/53\1“ deq@3) ... Original
S ~ AN history
J J B. Elementary Data Structures
deq(2) deq(3) L . .
To enforce the restrictions imposed by tk#rict out-of-
v

order semantics, we need to add some fields into each state.

2 s?' In particular, we add aenabledfield into each state to help
deq(l) deq2) enforce Restriction 1, and we add@enessattribute into each
il enabled event to enforce Restriction 2.
& «+ Permutation 1 State_stack We store the sequence of states of the current run
N in a doubly linked list called statstack. Executing a method
deq(3) call event moves the object from one state to another state.

Each states has the following fields:
o s.enabled is the set of events that can be executed at
« s.select is the event executed by the current history;
o s.done is the set of events executed satby some
previously explored permutations in the backtrack search;
« s.newly enabled is the set of events that become enabled
for the first time along the given histopy. The field is

... Permutation 2

Fig. 7. An example search tree for generatinglajuasi permutations of the
input sequenceleq( 1) ; deq(2); deq(3).

Hstory 0:  deq(1) --> deq(2) -->deq(3) oo initialized by the first run, and is used to compute the
s.enabled field in the subsequent runs.
History 1: deq(2) --> deq(l) --> deq(3) ok ok
:! story gt SeQ(é) --> SeQ(i) --> geq(g) l?llt() 0:: Example 1 s. new y_enabl ed. The initial state has at most
N --> --> . . H
ooy & Gedd Il deadm W (K + 1) events in its newlyenabled field, wherek
History 5: deq(3) --> deq(2) --> deq(l) NO NO is the quasi factor. Every other state has at most one

The input history can be arbitrarily re-shuffled to produge fi V€Nt in this newlyenabled field. For the given history
additional histories, of which only History 1 and History 2€d(1);deq(2);deq(3) and quasi factor 1, we have

satisfy the above two restrictiord the strict out-of-orderl-
quasi permutationThey are the desired quasi permutations

s1.newly_enabled$deq(1),deq(2)
pfs2.newly_enabled$deq(3)
L, s3.newly_enabled$ }

>1 events in the initial state
at most one event
at most one event

p’ whereas the others are not. In particular, History 3 vislat

Restriction 1 because the firseq returns the value that is |y gther words, each event will appear in the nevelyabled
two steps away from the head. History 4 violates Restrictigfgd of the state that is precisely steps ahead of its original
2 because the head value is returned by the tiiacbperation, - state iny’. We will enforce Restriction 1 with the help of the
which is too late. History 5 violates both restrictions. newly_enabled field.

We compute the quasi permutations using a depth-first
search (DFS) of the abstract states. For the above examﬁé","mple 25 enabl ed ands. done. For the above example,
this process is illustrated in Figure 7, where the initial i8 [ s, enabled%deq(1),deq(®) s1.done<{deq(1}

deq(1) ~ deq(2)  deq(3) s2.enabled£deq(2),deq(3) so.done<{deq(2}
assumed to bg; — sz — s3 —. s3.enabled£deq(3) s3.done={deq(3)

« In the initial run, we construct the state stack that holds _
the initial history. Then we find the last backtrack statd30th deq(1) anddeq(2) are ins;.enabled, but onlyleq(1)
which is states,, where we can executeq(3) instead IS in si.done because it is executed in the current run.

de di(";) Since the set s enableds.done) is not empty for both;

. 1)
of deq(2) . This leads to the second rup 2
dSc?(g)) fi 52 and sy, we have two backtrack states. After backtrack-

/
3 ) ing to so and executingdeq(3), we create a new permu-

« In the second run, we again find the last backtrack stalgiion deq(1); deq(3): deq(2). Similarly, after backtracking

which is s1, and execute@leq(2) instead ofdeq(1). This .~ 4ng executingdeq(2), we create a new permutation

leads to the third rurs, di(i) 8/2/ d1(1>) Sg di(?’)). deq(2); deq(1); deq(3).

« Inthe third run, we can no longer find any backtrack state. .
Therefore, the procedure terminates. We cannot gener%?% perr_nutatloraleq( 2); deq(1): ded(3), the enabled and done
a new run by choosingeq(3) in states;, because it ields will be changed to the following:
would violate Restriction 1. We cannot generate a neWg, .enabled¥deq(l),deq(2)
run by choosingdeq(3) in states) either, because it s:zf-enabled%dw(l)ydeq@
would violate Restriction 2. 55 -enabledtdeq(3)

An important feature of our algorithm is that it directlyAlthough (s5.enabledsy.done) is not empty, we cannot create
constructs valid permutations while skipping the invalites, the new permutatiodeq(2); deq(3); deq(1) becauseleq(1)
as opposed to constructing all permutations and then fitieriwould be out-of-order by two steps. We avoid generating such
out the invalid ones. In the running example, for instance, opermutations by leveraging the lateness attribute thadded
method will directly generate History 1 and History 2 froninto every enabled event.

s1.done<deq(1),deq(2)
s%.done-{deq(l}
st .done5{deq3




Lateness attribute: Each event ins.enabled has a latenesgheir newly enabled fields intact. Then we choose a previously

attribute, indicating how many steps this event is latentitet unexplored event irz.enabled to execute.

original occurrence irp’. It represents how many steps this

event can be postponed further in the current permutation.Algorithm 2 Generating/{-quasi permutations for history .
L:first_run(p ,K){

s[i-k] | at eness(e) = -k state stack<— empty list;

ce for each ( eventev in the sequence’ ) {
s[i].select =e lateness(e) = 0 s < new state:

s[ i +K] | ateness(e) = k statestack.append );

s.done <« {ev};
. . init_enabl ed_and_| at eness( s,ev, K );
Example 3 Consider the example above, where evens
executed in state; of the given history. Fok-quasi permuta- 1

. . - 11: }
tions, the earliest state wheeemay be executed is; 5, and 75| ; t_enabl ed_and_| at eness ( s,ev, K ) {

the latest state wheremay be executed is; ;. The lateness 13:  lateness— 0;
attribute of event in states;_,, is —k, meaning that it may 14:  while(1) {

be postponed for at mokt— (—k) = 2k steps. The lateness ofigg ﬁ(eg?gr';ig dde Z’ﬁfﬂﬁiﬁ i nul ) {

}

2
3
4
5:
6: s.select«+ ev;
7:
8
9
0 return state stack;

e in states; 1 is k, meaning that has reached the maximumaz: s.newly_enabled.add(ev, lateness );
lateness and therefore must be executed in this state. igf break;

Must-select event:This brings us to the important notion of: lateness —:

must-select event. Iz.enabled, if there does not exist anyi: s < s.prev in statestack;

event whose lateness reacliesll the enabled events can be’-21

postponed for at least one more step. In this case, we e‘qnbacktrack run ( statestack,p ) {

randomly choose an event from the seefabled\s.done) to  25: Let s be the last state in statstack such that

execute. If there exists an event srenabled whose Iateness26 _ Pick_an_enabl ed_event (s ) 7 null
if( suchs does not exist )

is k, then we must execute this event in state 28: return null

Example 4 If we backtrack from the current historyggf for feizhéssﬁfcfgzz:g S;ﬁi—setﬁggéé

deq(1), deq(2), deq(3) to states; and then executeeq(2), 31: but keeps.newly_enabled;
eventdeq(1) will have a lateness of 1 in statg, meaning 32

)
that it has reached the maximum delay allowed. Thereforegﬁ:: while( s 7 null) {

ev <pi ck_an_enabl ed_event ( s);

has to be executed in state. 35: s.selecte ev;
36: s.done< {ev};
s1.latenessfdeq(1):lateness=0, deq(2):latenesg=-1 37: s — s.next;
s} latenesstdeq(1):lateness=1, deq(3):latenesg=-1 38: updat e_enabl ed_and_| at eness( s );
s% latenessfdeq(3):lateness30 39:
40: return (sequence of selected events in statack);

The initial lateness is assigned to each enabled event whien}

the event is added te.enabled byt irst_run. Every time an 42: pick_an_enabl ed_event (s) {
43: if( 3(ev, lateness) € s.enabled &&lateness = k) {

event is not selected for execution in the current statejlit wyy: if( ev & s.done)  // must-select event
be inherited by the enabled field of the subsequent state. Tse retumn ev;
lateness of this event is then increased by 1. 46 else

it II;
An important observation is that, in each state, there cagl retm

}
be at most onemust-selectevent. This is because the first49:  if( 3(ev, lateness) € s.enabled &&ev ¢ s.done) )

run p’ is a total order of events, which gives each event g els;et“m ev;
different_lateneswalue—by definition, theiexpiration times 5. return null;
are all different. 53: }
54: updat e_enabl ed_and_| at eness (s ) {
55: p < s.prev;
. . . . . 56: if( s or p do not exist )
C. Algorithm: Constructingk-Quasi Permutations 57 retumn :
; ; i s.enabled« { };
.The p,SeUdo COde. for ger.]eratmg qlf'?‘SI. PermUtatlonS : for each( (ev, lateness) € p.enabled &&ev ¢ p.done){
history p’ is shown in Algorithm 2. Initializing the late- gq: s.enabled.add(ev, lateness — —) );

ness attributes of enabled events is performed by Sufs:

routine init_enabl ed_and_| ateness, which is called by 62  foreach( {ev, lateness) € s.newly enabled ){
. . : s.enabled.add(ev, lateness) );

first_run. The lateness attributes are then updated Ry:.

updat e_enabl ed_and_| at eness. 65: }

Each call tobacktrack_run will return a new quasi per-
mutation ofp’. Inside this subroutine, we search for the last The previously unexplored event inenabled is chosen by
backtrack states in state stack. If such backtrack state calling pi ck_an_enabl ed_event . If there exists a must-select
exists, we prepare the generation of a new permutation éyent ins.enabled whose lateness reackeshen it must be
resetting the fields of all subsequent states,afhile keeping chosen. Otherwise, we choose an event from thessendbled




\s.done) arbitrarily. We usepdat e_enabl ed_and_| at eness is the user’s responsibility to ensure this well-formedn&sis

to fill up the events irs.enabled. For events that are inheriteds important because, if the test program is not well-formed
from the previous state’s enabled set, we increase themméas there may beout-of-thin-air events. Below is an example.

by one. We iterate until the last state is reached. At thigtim

we have computed a new quasi permutatiop/of Thread 1 Thread 2 Hist1 Hist2 Hist3
The complexity otonput e_quasi _per nut ati ons() enq(3) enq(5) enq(3) enq(5) enq(3)

depends on the length of the input histgs§ denotedps, — °"%(% 990 o - b

as well as the quasi factoK. The overall complexity is -------- -------- deq() =3 deq() =5 deq() =4

O((1 4+ K)!M/U+EK)) where (1 + K)! is the number of _ -

permutations of(1 + K) events, andM/(1 + K) is the Here, the sequential specification {isi st 1, Hi st 2}. In both

In practice, this subroutine will not become a performandB® dea value can never be 4. This is unfortunate, because
bottleneck because test programs with snidlloften suffice H st3 is 1-quasi linearizable but cannot match any of the
in revealing linearizability violations. In addition, theput WO legal sequential historiesi(st 1 or Hi st 2) because it has

o = hlo is a project of the original history, to each ded()=4. This problem can be avoided by requiring the test
individual objecto, which further reduces the size of theProgram given to our method to be well-formed. For example,
input. by adding two moreleq calls to the end of the main thread,

we can avoid the aforementionedt-of-thin-air events.

D. Discussions VI. EXPERIMENTS

The real performance bottleneck in practice is due to theWe have implemented our new quasi linearizability check-

potentially large number of concurrent histories that naed ing method in a software tool based on the LLVM plat-

be fed to our method as input, as opposed to the computatiopgh, tor code instrumentation andspectfor systematically

overhead of Phases 1 and 2 within our method. T_he r_easg?éherating interleaved executions. Our tool, calRdund-
why we may have a Ia_lrge number of_concurrent histories Usp can handle C/C++ code of concurrent data structures on
because the number IS e>§ponent|al in the numbetpmf- the Linux/PThreads platform. We have extended the original
level concurrent operationsn the test program. Typically, implementation ofinspect[15], [16] by adding the support
the number of these low-level operations, dendtgdcan be for GNU built-in atomic functions for direct access of shére

significantly_ larger thanV/, the number of method_ calls in memory, since in practice, they are frequently used in the lo
the same history, becaus_e each method has to be |mplemeﬁg§§|1 code for implementing concurrent data structures.
by many low-level operations _suc.h as Load/Store over sharequ have conducted experiments on a set of concurrent data
memory and thread synchronizations. structures [3], [5], [4], [8], [5], [7] including both stamdd

In our experiments, we try to avoid the performancg,q qasj linearizable queues, stacks, and priority qudices

bottleneck by reducing the number of concurrent historieg, e of these concurrent data structures, there are seaeiral
primarily through the use of small test programs as inpud, ants, each of which uses a different implementation scheme.
advanced exploration heuristics (such as context bouhdting These benchmark examples fall into two sets

the Inspect tool.
Our method is geared toward bug hunting. Whenever we )
find a concurrent history that is not quasi linearizable, it isA- Results on the First Set of Benchmarks
guaranteed to be a real violatioRurthermore, at this moment, The characteristics of the first set of benchmark programs
the erroneous execution trace that gives risepthas been are shown in Table I. The first three columns list the name of
logged into a disk file by the underlying Inspect tool. The exhe data structure, a short description, and the numbenes i
ecution trace contains all the method invocation and respomf code. The next two columns show whether it is linearizable
events inp, as well as the low-level concurrent operationgnd quasi linearizable. The last column provides a list ef th
such as Load/Store operations and thread synchronizatiae$evant methods.
Such trace can be provided to the user as debugging aid. AFable Il shows the results for checking standard lineariz-
an example, we will show in Section VI-D how it can helmbility. The first four columns show the statistics of the
the user diagnose a real bug found in Bealbenchmarks. test program, including the name, the number of threads
However, since our method implements the L1 and L@&oncurrent/total), the number of method calls, and whethe
checks but not the L3 check as defined in Section Ill, even if dinearizability violations existFor example, 3*4+1 in thealls
concurrent histories of the test program are quasi linebhez column means that one child thread issued 3 method calls, the
we cannot conclude that the concurrent data structuré issel other child thread issued 4 method calls, and the main thread
quasi linearizable. issued 1 method call.lhe next two columns show the statistics
Furthermore, when checking for quasi linearizability, ounf Phase 1, consisting of the number of sequential histories
runtime checking framework has the capability of genegatirand the time for generating these sequential histories. The
test programs (harness) that anell-formed that is, the last three columns show the statistics of Phase 2, corgistin
number of enq operations is equal to the number aéq of the number of concurrent histories (buggy/total), thilto
operations. If the test program is provided by the user, themumber of sequentializations, and the time for checkingithe
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TABLE |
THE STATISTICS OF THE BENCHMARK EXAMPLES
| Class | Description | LOC | Linearizable | Quasi-Lin [ Methods checked |
IQueue buggy queue, deq may remove null even if not empty154 No NO enq(int), deq()
Herlihy/Wing queue correct normal queue 109 YES YES enq(int), deq()
Quasi Queue correct quasi queue 464 NO YES enq(int), deq()
Quasi Queue bl deq removes value more than k away from head 704 NO NO enq(int), deq()
Quasi Queue b2 deq removes values that have been removed befgre401 NO NO enq(int), deq()
Quasi Queue b3 deq null even the queue is not empty 427 NO NO enq(int), deq()
Quasi Stack bl pop null even if the stack is not empty 487 NO NO push(int), pop()
Quasi Stack b2 pop removes values move than k away from the tail 403 NO NO push(int), pop()
Quasi Stack linearizable, and hence quasi linearizable 403 YES YES push(int), pop()

Quasi Priority Queue implementation of quasi priority queue 508 NO YES enq(int, int), deqMin()
Quasi Priority Queue b2 degMin removes value more than k away from head 537 NO NO enq(int, int), deqMin()
TABLE I
RESULTS OF CHECKING STANDARD LINEARIZABILITY ON CONCURRENTDATA STRUCTURES
Test Program Phase 1 Phase 2
Class | threads| calls | violation || history | time (seconds)| history (buggy/total)| sequentialization] time (seconds)
IQueue 213 2*2+0 YES 3 0.1 2/6 13 0.3
Herlihy/Wing queue 213 2*2+0 NO 3 0.1 0/4 9 0.2
Quasi Queue 213 2%2+4 YES 6 0.2 16/16 61 25
Quasi Queue 213 3*3+4 YES 20 11 64/64 505 43.7
Quasi Queue 213 2*3+3 YES 10 0.4 24/32 169 8.3
Quasi Queue 213 3*3+2 YES 20 0.8 108/118 1033 1m23s
Quasi Queue 213 3*4+1 YES 35 1.6 149/198 2260 5m8s
Quasi Queue 213 4%4+0 YES 70 2.6 2741476 8484 37m34s
Quasi Queue bl 213 2*2+4 YES 6 0.3 91/91 409 17.8
Quasi Queue b2 213 2*2+4 YES 6 0.3 91/91 409 18.1
Quasi Queue b3 213 2*2+4 YES 6 0.3 141/141 653 26.9
Quasi Stack bl 213 2*2+4 YES 6 0.3 9/9 34 1.6
Quasi Stack b2 213 2*2+4 YES 6 0.3 16/16 61 25
Quasi Stack 213 2*2+4 NO 6 0.3 0/16 61 25
Quasi Priority Queue 213 2%2+4 YES 6 0.5 16/16 61 4.9
Quasi Priority Queue b2 2/3 2%2+4 YES 6 0.5 125/125 532 27.0

In all test cases, our method was able to correctly detect tBe Experimental Results on tfgcal Benchmarks

linearizability violations. We have also conducted experiments on a set of recently

released high-performance concurrent objects in Sual

Table Il shows the experimental results for checking quasiiite [17]. The characteristics of this second set of berathm
linearizability. The first four columns show the statisticf programs are shown in Table IV. The format of this table
the test program. The next two columns show the statistigsthe same as Table I. For a more detailed description of the
of Phase 1, and the last three columns show the statistiggividual algorithms, please refer to the original papenere
of Phase 2, consisting of the number of concurrent historigfese concurrent data structures are published [7], [§], [6
(buggy/total), the total number of quasi permutations, #red  Taple V shows our experimental results for applyRwound-
time for generating and checking thein. all test cases, we Up to this set of benchmarks. In addition to obtaining the
set the quaSi factor to 2 unless SpeCified otherwise in the tpérformance data, we have Successfu”y detected two real
program name (e.g., gfactor=3). linearizability violations in theScal suite, one of which is

a known violation whereas the other is a previously unknown

Our method was able to detect all real (quasi) linearizgbiliprogramming error. In particulas)-queuds a queue designed
violations in fairly small test programs. This is consigtaith ~ for high performance applications, but it is not thread safd
the experience of Burckhaet al.[18] in evaluating their Line- therefore is not linearizable. Note that the fact thlatjueuds
Up tool for checking standard (but not quasi) linearizaili not linearizable is known.
This is due to the particular application of checking the In contrastk-stackis designed to be quasi linearizable, but
implementation of concurrent data structures. Althougé tldue to an ABA bug, the data structure implementation is not
number of method calls in the test program is small, ttguasi linearizable. In fact, it is not even linearizablecsin
underlying low-level shared memory operations can still tbe behavior may violate the standard functional specifinat
many. This leads to a rich set of very subtle interactiordf a stack.(An ABA problem [2] occurs in a multithreaded
between the low-level memory accessing instructions. thhsuprogram when a memory location is read twice, has the
cases, the buggy execution can be uncovered by checkingame values for both reads, and therefore appears to iadicat
test program with only a relatively small number of threadénhothing has changed.” However, another thread may have
method calls, and context switches. interleaved in between the two reads, changed the value, did



11

TABLE Il
RESULTS OF CHECKING QUASI LINEARIZABILITY ON CONCURRENT DAR STRUCTURES
Test Program Phase 1 Phase 2
Class | threads| calls | violation || history | time (seconds)| history (buggy/total)| permutation| time (seconds)
Quasi Queue 2/3 2*2+4 NO 6 0.2 0/16 1708 2.9
Quasi Queue 213 3*3+4 NO 20 1.1 0/64 73730 5m33s
Quasi Queue 213 2*3+3 NO 10 0.4 0/32 4732 9.6
Quasi Queue 213 3*3+2 NO 20 0.8 0/118 28924 1m34s
Quasi Queue 2/3 3*4+1 NO 35 1.6 0/198 63280 5m40s
Quasi Queue 213 4*4+0 NO 70 2.6 0/476 237552 40m56s
Quasi Queue (gfactor=3) 2/3 2*3+3 NO 10 0.4 0/32 8112 14.9
Quasi Queue (gfactor=3) 2/3 3*3+2 NO 20 0.8 0/118 49584 2m36s
Quasi Queue (gfactor=3) 2/3 3*4+1 NO 35 1.6 0/198 108480 10m15s
Quasi Queue (gfactor=3) 2/3 4*4+0 NO 70 2.6 0/476 407232 69m32s
Quasi Queue bl 2/3 2%2+4 YES 6 0.3 41/91 11452 20.1
Quasi Queue b2 2/3 2%2+4 YES 6 0.3 91/91 11452 20.2
Quasi Queue b3 2/3 2*2+4 YES 6 0.3 73/141 18284 31.0
Quasi Stack bl 2/3 2*2+4 YES 6 0.3 9/9 2108 3.5
Quasi Stack b2 2/3 2*2+4 YES 6 0.3 6/16 1708 2.8
Quasi Stack b3 2/3 2*2+4 NO 6 0.3 0/16 1708 2.8
Quasi Priority Queue 2/3 2*2+4 NO 6 0.5 0/16 1708 4.7
Quasi Priority Queue b2 2/3 2*2+4 YES 6 0.5 54/125 6384 20.0
TABLE IV
THE STATISTICS OF THESCAL [17] BENCHMARK EXAMPLES (TOTAL LOC oOF Scalis 5,973).

| Class | Description | LOC | Linearizable | Quasi-Lin | Methods checked |
sl-queue singly-linked list based single-threaded queue 73 NO NO enq, deq
t-stack concurrent stack by R. K. Treiber 109 YES YES push, pop
ms-queue concurrent queue by M. Michael and M. Scott 250 YES YES enq, deq
rd-queue random dequeued queue by Y. Afek, G. Korland, and E. Yanovsky 162 NO YES enq, deq
bk-queue bounded k-FIFO queue by Y. Afek, G. Korland, and E. Yanovsky 263 NO YES enq, deq
ubk-queue| unbounded k-FIFO queue by C.M. Kirsch, M. Lippautz, and HydPa] 259 NO YES enq, deq
k-stack k-stack by T. A. Henzinger, C. M. Kirsch, H. Payer, and A. Soka | 337 NO NO push, pop

some work, and then changed the value back.) generated by the Inspect tool by simply comparing theiiutixt

Our tool is able to quickly detect the linearizability viitan  representations; (2) in Phase 2, we remove from the input all
in sl-queueand the quasi linearizability violation ik-stack identical concurrent executions fed to our method—we say
We have reported the violation lxstackto the Scaldevelop- that two concurrent executions are identical if they giseri
ers, who have confirmed that it is indeed a bug. to the same history, even though they may differ in the low-

It is worth pointing out that existing concurrency bug finglin level concurrent operations within the method calls; anddB
tools such as data-race and atomicity violation detecto#s @ach sequentialization’ € ®(p), or each quasi permutation
not effective for checking low-level C/C++ code that implep” € W(p’), we check if p’ or p” is identical to some
ments most of the highly concurrent data structures. Theseguentialization or quasi permutation of a previouslyengul
bug detectors are designed primarily for checking appticat concurrent history, and if the answer is yes, we skip it.
level code. Furthermore, they are often based on the locksef; ig \yorth pointing out that, in our application, the length
analysis and condition variable analysis. Although lockd a q¢ 16 gequential and concurrent execution histories aEnof
condition variables are W'de|Y u§ed n ertujg applicatlevel short. Therefore, a straightforward implementation of the
code, they are fafe'Y us_ed n implementing concurrent da&Bove algorithm for identifying redundant histories athga
structures. Synchrqmzatlon_ln concurrent data strustaney s well in practice. For example, in Table V, each exe-
be implemented using atomic memory accesses. To th_e_bes&%on history has at most 14 method calls (1+1+12), among
our knowledge, no prior method can directly check quami#at hich only two method calls are executed concurrently. In
properties in such low-level C/C++ code. such case, the pair-wise comparison of execution histases

described above is fast. Specifically, compared to the dost o
C. Optimizations to Reduce the Runtime Overhead the other parts of our method, e.g., loading the executable t
e main memory and performing the interleaved executions,
applied the following optimizations in Phases 1 and 2, t0€ timeé spent on comparing these histories in memory is

reduce the number of traces generated from the sequenz‘l’il%fayS negligible. This is the reason why, in Table V we
specificationspec(o), the setd® of sequentializations, and the@nly report the number of permutations and the total time.
set U of quasi permutations. Our evaluation of these optimizations on tBeal bench-
Specifically, our optimizations are as follows:(1) in marks shows that they can lead to a significant reduction
Phase 1, we remove frompec(o) all identical serial histories in the number of permutations and the execution time. Our

To further improve the runtime performance, we ha
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TABLE V
RESULTS OF CHECKING QUASI LINEARIZABILITY FOR THESCAL [17] BENCHMARK EXAMPLES.
Test Program Phase 1 Phase 2
Class | threads| calls [ violation |[ history [ time (seconds)| history (buggy/total)[ permutation| time (seconds)
sl-queue (eng+deq) 273 1*1+12 NO 2 0.38 02 1032 1.61
sl-queue (eng+enq) 2/3 1*1+12 YES 2 0.37 12 1032 1.78
sl-queue (deg+deq) 2/3 1*1+12 YES 2 0.37 4/8 5160 7.21
t-stack (push+pop) 273 1*1+12 NO 2 0.58 0/8 5160 7.77
t-stack (push+push) 273 1*1+12 NO 2 0.59 0/8 5160 7.78
t-stack (pop+pop) 2/3 1*1+12 NO 2 0.56 0/8 5160 7.63
ms-queue (eng+deq)] 2/3 1*1+12 NO 2 0.76 0/3 1720 2.94
ms-queue (eng+enq)] 2/3 1*1+12 NO 2 0.79 0/31 20984 32.47
ms-queue (deqg+deq)] 2/3 1*1+12 NO 2 0.76 0/12 7912 12.33
rd-queue (eng+deq) 2/3 1*1+12 NO 2 0.90 0/5 3096 5.97
rd-queue (eng+enq) 2/3 1*1+12 NO 2 0.91 0/31 20984 37.83
rd-queue (deqg+deq) 273 1*1+12 NO 2 0.87 0/4 2408 7.31
bk-queue (eng+deq) 273 1*1+12 NO 2 1.27 0/29 19608 34.45
bk-queue (eng+enq) 2/3 1*1+12 NO 2 1.30 0/41 27864 50.98
bk-queue (deq+deq)| 2/3 | 1*1+12 NO 2 1.22 024 16168 28.11
ubk-queue (eng+deq) 2/3 1*1+12 NO 2 2.42 0/21 14104 35.71
ubk-queue (eng+enqg) 2/3 1*1+12 NO 2 1.86 0/41 27864 61.94
ubk-queue (deq+deq) 2/3 | 1¥1+12 NO 2 1.84 0/52 35432 68.21
k-stack (push+pop) 273 | I*1+12 | YES 2 155 11769 47128 1m29s
k-stack (push+push)| 2/3 | 1*1+12 NO 2 1.69 012 7192 15.13
k-stack (pop+pop) 203 | I*1+12 NO 2 1.62 0/8 5160 9.46
10000
100
X
1000 : x
10 .
%
100 . 1 - : :
100 1000 10000 10 100

Fig. 8. Results: Evaluating the impact of optimizations on the @enfance Fig. 9. Results: Evaluating the impact of optimizations on the qenfance
for Scal benchmarks [17]. We compare thmeimber of quasi permutations for Scalbenchmarks [17]. We compare tegecution time (in secondsj our
generated by our method with optimizationgdxis) and without optimiza- method with optimizationsyfaxis) and without optimizationszfaxis). Each

tions (z-axis). Each + represents a test case. Test cases belowathendl

+ represents a test case. Test cases below the diagonalrdirtbeawinning

line are the winning cases for our method with optimizations cases for our method with optimizations.

D. Generating Diagnosis Information

Our Round-Uptool guarantees that all the reported (quasi)
linearizability violations are real violations; that id)ely can

experimental results are shown in the scatter plots in Ei@ur appear in the actual program executido.help the developer
and 9,which compare the number of permutations and thiiagnose the reported violation, our tool leverages Inspec
total time of our method with and without the optimizationsthe underlying concurrency testing tool, to generate aildéta
Note that the concrete time and the number of permutatioesecution trace for each concurrent history. When a current
with optimizations, have already been reported in the lasistory p is proved to be erroneous, i.e., neither linearizable
two columns of Table V.The z-axis shows the number of nor quasi linearizable, the detailed execution trace wdl b
permutations and the execution time without these optimizarovided to the user as debugging aid. In this execution
tions, whereas thg-axis shows the number of permutationsrace, we have recorded not only the method invocation and
and the execution time with these optimizations. Here, tsoirresponse events jmbut also the low-level operations by each
below the red diagonal lines are the winning cases for tiigread, including Load/Store instructions over shared orgm
optimizations. Note that both the-axis and they-axis are in and thread synchronizations. For more information on how
logarithmic scale. such execution trace is generated, please refer to thednspe



tool [15], [16].

In terms of the ABA bug that we have detectedkistack
for example, our tool shows that the violation occurs when «
one thread executes thash operation while another thread
executes thepop operation concurrently. Due to erroneous
thread interleaving, it is possible for the same data item to
be added to the stack twice, despite the fact that plirh .
operation is executed only once. In the remainder of this
subsection, we shall explain this bug in more details. .

First, we show in Algorithm 3 the simplified pseudo code
of the push and pop methods ofk-stackas implemented in .
the Scal suite. Thepush() method starts by putting the data
item into the current segment and then trying to commit, by
checking if the flagsegnent —del et e is 0. Thepop() method,
which may be executed by another thread concurrently withe
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therefore invokes functionry_renove_segnent () to try

to remove the segment;

Step 2 Inside methogush, threadT; pushes a data item
into the segment, and then calls functianmi t t ed() to
make sure the data item is successfully added by waiting
conmi tted() to return true;

Step 3 Inside functiontry_renmove_segment (), thread

T> marks the top segment aeleted

Step 4 Inside functioncomi tted(), threadT; fails the
condition in Line 17;

Step 5 Inside functiontry_renove_segnent (), thread

T, checks the segment again, and notices that the segment
is not empty. Therefore, thredt, sets the top segment
back tonot deleted

Step 6 Inside functioncommi tted(), threadT; fails the

push(), starts by setting the flagegment —del ete to 1 and
then trying to remove the segment if it is empty.

The bug happens when the top segment is empty, thfgad

condition in Line 18 and returns false. Therefore, method
push returns to the beginning of the while loop, and
pushes the same data item into the segment again.

is trying to push a data item onto the stack, and at the samg we can see, this bug requires complex interactions betwee
time, threadT5 is trying to pop a data item from the stackihe two threads to manifest and therefore is difficult to dete

The erroneous execution trace is summarized as follows:

Thread 1

Thread 2
Pop: L10-12
Push: L3- L5

try_renove_segnent: L23
Commi tted: L17

try_renove_segnent: L24-L25
Conmi tted: L18-L19
Push: L3- L6

Algorithm 3 The simplified pseudo code @&fstackin Scal
push(T item

while ( TRUE ) {
put item into the segment;
if (comm tted() )return TRUE;

ONOTRWNE
— —~

}

pop()
9: {
10: while ( TRUE ) {
11: try to find an item in the segment;
12: if (not found)try_renmove_segnent ();
13:
14: }
15: committed()
16:
17: if ( segment>delete==0 )return TRUE;
18: else if ( segment>delete==1 ){...}
19: return FALSE;
20: }
21:try_renove_segnent ()
22: {
23: segmentrdelete=1;
24: if (is_empty(segment) ...}
25: else segment>delete=0;
26: }

From the above debugging information reported byRaund-
Up tool, we can explain the erroneous thread interleaving
follows:

o Step 1 Since the stack is empty, inside methpeb,

manually. However, it can be easily detected by Raund-
Up tool, since our tool has the capability of systematically
enumerating possible thread interleavings and then chgcki
each of them for (quasi) linearizability violations.

VII.

Quasi linearizability was first introduced by Afedt al. [3]
as a way to trade off correctness for better runtime per-
formance while implementing concurrent queues for highly
parallel applications. Since then, the idea of quantiédyiv
relaxing the consistency requirement of linearizabiliyirn-
prove runtime performance have been used in the design of
various concurrent data structures [8], [5], [6], [4]. Mo
cently, Henzingeet al.[7] generalized the idea by proposing a
systematic and formal framework for obtaining new conautrre
data structures by quantitatively relaxing existing ones.

Round-Upis the first runtime verification method for de-
tecting quasi linearizability violations in the source eod
implementation of concurrent data structures. This papani
extended version of our recent work [19] where we proposed
the method for the first time. In this extended version, we
have provided a more detailed description of the algorithms
and presented more experimental results.

A closely related work is a model checking based method
that we proposed [20], [21] for verifying quantitative re-
laxations of linearizability inmodelsof concurrent systems.
However, the method was designed for statically verifying
finite-state models, not for dynamically checking the C/C++
code of concurrent data structure implementations. Algifou
the Line-Up tool by Burckhardet al. [18] also has the
capability of dynamically checking the code of concurrent
data structures, it can only check linearizability but gagsi
linearizability. In contrast, the main contribution of $hpaper
BSproposing a new method for checking quasi linearizabilit

Besides Line-Up [18], there is a large body of work
on statically verifying standard linearizability propes. For

RELATED WORK

threadTy cannot find any data item in the segment, anexample, Liu et al. [11] verify standard linearizability by



proving that an implementation model refines a specificatiofs]
model. Vechev et al. [12] use the SPIN model checker to
verify linearizability in a Promela model. Cerny et al. [13
use automated abstractions together with model checking (&
verify linearizability properties in Java programs. Thene
also techniques for verifiying linearizability by constting 7]
mechanical proofs, often with manual intervention [9], ]}10
[22]. However, none of these methods can check quantitative
relaxations of linearizability. 8
There are also static and runtime verification methods for
other types of consistency conditions, including seqaénti
consistency [23], quiescent consistency [24], and evdantug]
consistency [25]. Some of these consistency conditions, in
principle, may be used during software testing and verificB9l
tion to ensure the correctness of concurrent data stricture
However, they are not as widely used as linearizability in
this application domain. Furthermore, they do not have til
same type of quantitative properties and the corresponding
verification challenges as iquasilinearizability. [12]
For checking application level code, which has significantl
different characteristics from the low-level code that leap |15
ments concurrent data structurssyializability and atomicity
are the two frequently used correctness criteria. In thegdit
ture, there is a large body of work on detecting serializghbil [14]
and atomicity violations (e.g. [26], [27], [28] and [29],dB
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], A1],
[42], [43], [44], [45], [46], [47], [48]). It is worth pointig
out that these bug finding methods differ from our method
in that they are checking for different types of properties. [16]
practice, atomicity and serializability have been usethprily
at the shared memory read/write instruction level, wheregs]
linearizability has been used primarily at the method ARéle
Furthermore, existing tools for detecting serializabiland
atomicity violations do not check for quantitative propest

[15]

(18]

VIII. CONCLUSIONS [19]
We have presented a new algorithm for runtime verifica-
tion of standard and quasi linearizability in concurrentada,
structures. Our method works directly on the C/C++ code
and is fully automated, without requiring the user to Wl’itEl
functional specifications or to annotate linearizationnp®iin ]
the code. It also guarantees that all the reported violation
are real violations. We have implemented the new algorithi#?!
in a software tool calledRound-Up Our experimental eval-
uation shows thaRound-Upis effective in detecting quasi[23]
linearizability violations and in generating informatidor

error diagnosis. [24]
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