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Abstract. Power side-channel attacks, capable of deducing secret using statisti-
cal analysis techniques, have become a serious threat to devices in cyber-physical
systems and the Internet of things. Random masking is a widely used counter-
measure for removing the statistical dependence between secret data and side-
channel leaks. Although there are techniques for verifying whether software code
has been perfectly masked, they are limited in accuracy and scalability. To bridge
this gap, we propose a refinement-based method for verifying masking counter-
measures. Our method is more accurate than prior syntactic type inference based
approaches and more scalable than prior model-counting based approaches us-
ing SAT or SMT solvers. Indeed, it can be viewed as a gradual refinement of a
set of semantic type inference rules for reasoning about distribution types. These
rules are kept abstract initially to allow fast deduction, and then made concrete
when the abstract version is not able to resolve the verification problem. We have
implemented our method in a tool and evaluated it on cryptographic benchmarks
including AES and MAC-Keccak. The results show that our method significantly
outperforms state-of-the-art techniques in terms of both accuracy and scalability.

1 Introduction
Cryptographic algorithms are widely used in embedded computing devices, including
SmartCards, to form the backbone of their security mechanisms. In general, security is
established by assuming that the adversary has access to the input and output, but not
internals, of the implementation. Unfortunately, in practice, attackers may recover cryp-
tographic keys by analyzing physical information leaked through side channels. These
so-called side-channel attacks exploit the statistical dependence between secret data
and non-functional properties of a computing device such as the execution time [38],
power consumption [39] and electromagnetic radiation [49]. Among them, differential
power analysis (DPA) is an extremely popular and effective class of attacks [42,30].

To thwart DPA attacks, masking has been proposed to break the statistical depen-
dence between secret data and side-channel leaks through randomization. Although
various masked implementations have been proposed, e.g., for AES or its non-linear
components (S-boxes) [15,52,51,37], checking if they are correct is always tedious and
error-prone. Indeed, there are published implementations [51,52] later shown to be in-
correct [21,22]. Therefore, formally verifying these countermeasures is important.
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Fig. 1. Overview of SCInfer, where “ICR” denotes the intermediate computation result.

Previously, there are two types of verification methods for masking countermea-
sures [54]: one is type inference based [44,10] and the other is model counting
based [27,26]. Type inference based methods [44,10] are fast and sound, meaning they
can quickly prove the computation is leakage free, e.g., if the result is syntactically inde-
pendent of the secret data or has been masked by random variables not used elsewhere.
However, syntactic type inference is not complete in that it may report false positives.
In contrast, model counting based methods [27,26] are sound and complete: they check
if the computation is statistically independent of the secret [15]. However, due to the
inherent complexity of model counting, they can be extremely slow in practice.

The aforementioned gap, in terms of both accuracy and scalability, has not been
bridged by more recent approaches [6,47,13]. For example, Barthe et al. [6] proposed
some inference rules to prove masking countermeasures based on the observation that
certain operators (e.g., XOR) are invertible: in the absence of such operators, purely
algebraic laws can be used to normalize expressions of computation results to apply the
rules of invertible functions. This normalization is applied to each expression once, as it
is costly. Ouahma et al. [47] introduced a linear-time algorithm based on finer-grained
syntactical inference rules. A similar idea was explored by Bisi et al. [13] for analyzing
higher-order masking: like in [6,47], however, the method is not complete, and does not
consider non-linear operators which are common in cryptographic software.

Our contribution. We propose a refinement based approach, named SCInfer, to bridge
the gap between prior techniques which are either fast but inaccurate or accurate but
slow. Fig. 1 depicts the overall flow, where the input consists of the program and a set
of variables marked as public, private, or random. We first transform the program to
an intermediate representation: the data dependency graph (DDG). Then, we traverse
the DDG in a topological order to infer a distribution type for each intermediate com-
putation result. Next, we check if all intermediate computation results are perfectly
masked according to their types. If any of them cannot be resolved in this way, we
invoke an SMT solver based refinement procedure, which leverages either satisfiabil-
ity (SAT) solving or model counting (SAT#) to prove leakage freedom. In both cases,
the result is fed back to improve the type system. Finally, based on the refined type
inference rules, we continue to analyze other intermediate computation results.

Thus, SCInfer can be viewed as a synergistic integration of a semantic rule based
approach for inferring distribution types and an SMT solver based approach for refin-
ing these inference rules. Our type inference rules (Section 3) are inspired by Barthe
et al. [6] and Ouahma et al. [47] in that they are designed to infer distribution types of
intermediate computation results. However, there is a crucial difference: their inference
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rules are syntactic with fixed accuracy, i.e., relying solely on structural information of
the program, whereas ours are semantic and the accuracy can be gradually improved
with the aid of our SMT solver based analysis. At a high level, our semantic type infer-
ence rules subsume their syntactic type inference rules.

The main advantage of using type inference is the ability to quickly obtain sound
proofs: when there is no leak in the computation, often times, the type system can pro-
duce a proof quickly; furthermore, the result is always conclusive. However, if type
inference fails to produce a proof, the verification problem remains unresolved. Thus,
to be complete, we propose to leverage SMT solvers to resolve these left-over verifica-
tion problems. Here, solvers are used to check either the satisfiability (SAT) of a logical
formula or counting its satisfying solutions (SAT#), the later of which, although expen-
sive, is powerful enough to completely decide if the computation is perfectly masked.
Finally, by feeding solver results back to the type inference system, we can gradually
improve its accuracy. Thus, overall, the method is both sound and complete.

We have implemented our method in a software tool named SCInfer and evaluated
it on publicly available benchmarks [27,26], which implement various cryptographic
algorithms such as AES and MAC-Keccak. Our experiments show SCInfer is both
effective in obtaining proofs quickly and scalable for handling realistic applications.
Specifically, it can resolve most of the verification subproblems using type inference
and, as a result, satisfiability (SAT) based analysis needs to be applied to few left-over
cases. Only in rare cases, the most heavyweight analysis (SAT#) needs to be invoked.

To sum up, the main contributions of this work are as follows:
– We propose a new semantic type inference approach for verifying masking coun-

termeasures. It is sound and efficient for obtaining proofs.
– We propose a method for gradually refining the type inference system using SMT

solver based analysis, to ensure the overall method is complete.
– We implement the proposed techniques in a tool named SCInfer and demonstrate

its efficiency and effectiveness on cryptographic benchmarks.

The remainder of this paper is organized as follows. After reviewing the basics in Sec-
tion 2, we present our semantic type inference system in Section 3 and our refinement
method in Section 4. Then, we present our experimental results in Section 5 and com-
parison with related work in Section 6. We give our conclusions in Section 7.

2 Preliminaries
In this section, we define the type of programs considered in this work and then review
the basics of side-channel attacks and masking countermeasures.

2.1 Probabilistic Boolean Programs
Following the notation used in [15,27,26], we assume that the program P implements
a cryptographic function, e.g., c ← P(p, k) where p is the plaintext, k is the secret key
and c is the ciphertext. Inside P, random variable r may be used to mask the secret
key while maintaining the input-output behavior of P. Therefore, P may be viewed
as a probabilistic program. Since loops, function calls, and branches may be removed
via automated rewriting [27,26] and integer variables may be converted to bits, for
verification purposes, we assume that P is a straight-line probabilistic Boolean program,
where each instruction has a unique label and at most two operands.
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1 bool compute (bool r1 ,bool r2 ,
2 bool r3 ,bool k )
3 {
4 bool c1, c2, c3, c4, c5, c6 ;
5 c1 = k ⊕ r2 ;
6 c2 = r1 ⊕ r2 ;
7 c3 = c2 ⊕ c1 ;
8 c4 = c3 ⊕ c2 ;
9 c5 = c4 ⊕ r1 ;

10 c6 = c5 ∧ r3 ;
11 return c6 ;
12 }

kr2r1r3
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Fig. 2. An example for masking countermeasure.

Let k (resp. r) be the set
of secret (resp. random) bits, p
the public bits, and c the vari-
ables storing intermediate re-
sults. Thus, the set of variables
is V = k∪ r∪ p∪ c. In addition,
the program uses a set op of op-
erators including negation (¬),
and (∧), or (∨), and exclusive-
or (⊕). A computation of P is a
sequence c1 ← i1(p, k, r); · · · ; cn ← in(p, k, r) where, for each 1 ≤ i ≤ n, the value
of ii is expressed in terms of p, k and r. Each random bit in r is uniformly distributed
in {0, 1}; the sole purpose of using them in P is to ensure that c1, · · · cn are statistically
independent of the secret k.

Data dependency graph (DDG). Our internal representation of P is a graph GP =

(N, E, λ), where N is the set of nodes, E is the set of edges, and λ is a labeling function.

– N = L ] LV , where L is the set of instructions in P and LV is the set of terminal
nodes: lv ∈ LV corresponds to a variable or constant v ∈ k ∪ r ∪ p∪ {0, 1}.

– E ⊆ N × N contains edge (l, l′) if and only if l : c = x ◦ y, where either x or y is
defined by l′; or l : c = ¬x, where x is defined by l′;

– λ maps each l ∈ N to a pair (val, op): λ(l) = (c, ◦) for l : c = x ◦ y; λ(l) = (c,¬) for
l : c = ¬x; and λ(l) = (v,⊥) for each terminal node lv.

We may use λ1(l) = c and λ2(l) = ◦ to denote the first and second elements of the pair
λ(l) = (c, ◦), respectively. We may also use l.lft to denote the left child of l, and l.rgt
to denote the right child if it exists. A subtree rooted at node l corresponds to an inter-
mediate computation result. When the context is clear, we may use the following terms
exchangeably: a node l, the subtree T rooted at l, and the intermediate computation
result c = λ1(l). Let |P| denote the total number of nodes in the DDG.

Fig. 2 shows an example where k = {k}, r = {r1, r2, r3}, c = {c1, c2, c3, c4, c5, c6} and
p = ∅. On the left is a program written in a C-like language except that ⊕ denotes XOR
and ∧ denotes AND. On the right is the DDG, where

c3 = c2 ⊕ c1 = (r1 ⊕ r2) ⊕ (k ⊕ r2) = k ⊕ r1
c4 = c3 ⊕ c2 = ((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2) = k ⊕ r2
c5 = c4 ⊕ r1 = (((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1 = k ⊕ r1 ⊕ r2
c6 = c5 ∧ r3 = ((((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1) ∧ r3 = (k ⊕ r1 ⊕ r2) ∧ r3

Let supp : N → k ∪ r ∪ p be a function mapping each node l to its support variables.
That is, supp(l) = ∅ if λ1(l) ∈ {0, 1}; supp(l) = {x} if λ1(l) = x ∈ k ∪ r ∪ p; and
supp(l) = supp(l.lft) ∪ supp(l.rgt) otherwise. Thus, the function returns a set of
variables that λ1(l) depends upon structurally.

Given a node l whose corresponding expression e is defined in terms of variables
in V , we say that e is semantically dependent on a variable r ∈ V if and only if there
exist two assignments, π1 and π2, such that π1(r) , π2(r) and π1(x) = π2(x) for every
x ∈ V \ {r}, and the values of e differ under π1 and π2.
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Let semd : N → r be a function such that semd(l) denotes the set of random vari-
ables upon which the expression e of l semantically depends. Thus, semd(l) ⊆ supp(l);
and for each r ∈ supp(l) \ semd(l), we know λ1(l) is semantically independent of
r. More importantly, there is often a gap between supp(l) ∩ r and semd(l), namely
semd(l) ⊆ supp(l)∩ r, which is why our gradual refinement of semantic type inference
rules can outperform methods based solely on syntactic type inference.

Consider the node lc4 in Fig. 2: we have supp(lc4 ) = {r1, r2, k}, semd(lc4 ) = {r2}, and
supp(lc4 ) ∩ r = {r1, r2}. Furthermore, if the random bits are uniformly distributed in
{0, 1}, then c4 is both uniformly distributed and secret independent (Section 2.2).

2.2 Side-channel Attacks and Masking
We assume the adversary has access to the public input p and output c, but not the
secret k and random variable r, of the program c ← P(p, k). However, the adversary
may have access to side-channel leaks that reveal the joint distribution of at most d
intermediate computation results c1, · · · cd (e.g., via differential power analysis [39]).
Under these assumptions, the goal of the adversary is to deduce information of k. To
model the leakage of each instruction, we consider a widely-used, value-based model,
called the Hamming Weight (HW) model; other power leakage models such as the
transition-based model [5] can be used similarly [6].

Let [n] denote the set {1, · · · , n} of natural numbers where n ≥ 1. We call a set with
d elements a d-set. Given values (p, k) for (p, k) and a d-set {c1, · · · , cd} of intermediate
computation results, we use Dp,k(c1, · · · cd) to denote their joint distribution induced by
instantiating p and k with p and k, respectively. Formally, for each vector of values
v1, · · · , vd in the probability space {0, 1}d, we have Dp,k(c1, · · · cd)(v1, · · · , vd) =

|{r ∈ {0, 1}|r| | v1 = i1(p = p, k = k, r = r), · · · , vd = id(p = p, k = k, r = r)}|
2|r|

.

Definition 1. We say a d-set {c1, · · · , cd} of intermediate computation results is

– uniformly distributed if Dp,k(c1, · · · , cd) is a uniform distribution for any p and k.
– secret independent if Dp,k(c1, · · · , cd) = Dp,k′ (c1, · · · , cd) for any (p, k) and (p, k′).

Note that there is a difference between them: an uniformly distributed d-set is always
secret independent, but a secret independent d-set is not always uniformly distributed.

Definition 2. A program P is order-d perfectly masked if every k-set {c1, · · · , ck} of P
such that k ≤ d is secret independent. When P is (order-1) perfectly masked, we may
simply say it is perfectly masked.

To decide if P is order-d perfectly masked, it suffices to check if there exist a d-set and
two pairs (p, k) and (p, k′) such that Dp,k(c1, · · · , cd) , Dp,k′ (c1, · · · , cd). In this context,
the main challenge is computing Dp,k(c1, · · · , cd) which is essentially a model-counting
(SAT#) problem. In the remainder of this paper, we focus on developing an efficient
method for verifying (order-1) perfect masking, although our method can be extended
to higher-order masking as well.

Gap in current state of knowledge. Existing methods for verifying masking coun-
termeasures are either fast but inaccurate, e.g., when they rely solely on syntactic type
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inference (structural information provided by supp in Section 2.1) or accurate but slow,
e.g., when they rely solely on model-counting. In contrast, our method gradually refines
a set of semantic type-inference rules (i.e., using semd instead of supp as defined in
Section 2.1) where constraint solvers (SAT and SAT#) are used on demand to resolve
ambiguity and improve the accuracy of type inference. As a result, it can achieve the
best of both worlds.

3 The Semantic Type Inference System
We first introduce our distribution types, which are inspired by prior work in [47,6,13],
together with some auxiliary data structures; then, we present our inference rules.

3.1 The Type System

Let T = {CST, RUD, SID, NPM, UKD} be the set of distribution types for intermediate com-
putation results, where ~c� denotes the type of c← i(p, k, r). Specifically,

– ~c� = CST means c is a constant, which implies that it is side-channel leak-free;
– ~c� = RUD means c is randomized to uniform distribution, and hence leak-free;
– ~c� = SID means c is secret independent, i.e., perfectly masked;
– ~c� = NPM means c is not perfectly masked and thus has leaks; and
– ~c� = UKD means c has an unknown distribution.

Definition 3. Let unq : N → r and dom : N → r be two functions such that (i)
for each terminal node l ∈ LV , if λ1(l) ∈ r, then unq(l) = dom(l) = λ1(l); otherwise
unq(l) = dom(l) = supp(l) = ∅; and (ii) for each internal node l ∈ L, we have

– unq(l) = (unq(l.lft) ∪ unq(l.rgt)) \ (supp(l.lft) ∩ supp(l.rgt));
– dom(l) = (dom(l.lft)∪ dom(l.rgt))∩ unq(l) if λ2(l) = ⊕; but dom(l) = ∅ otherwise.

Both unq(l) and dom(l) are computable in time that is linear in |P| [47]. Following the
proofs in [47,6], it is easy to reach this observation: Given an intermediate computation
result c← i(p, k, r) labeled by l, the following statements hold:

1. if |dom(l)| , ∅, then ~c� = RUD;
2. if ~c� = RUD, then ~¬c� = RUD; if ~c� = SID, then ~¬c� = SID.
3. if r < semd(l) for a random bit r ∈ r, then ~r ⊕ c� = RUD;
4. for every c′ ← i′(p, k, r) labeled by l′, if semd(l) ∩ semd(l′) = ∅ and ~c� = ~c′� =

SID, then ~c ◦ c′� = SID.

Fig. 3 shows our type inference rules that concretize these observations. When multiple
rules could be applied to a node l ∈ N, we always choose the rules that can lead to
~l� = RUD. If no rule is applicable at l, we set ~l� = UKD. When the context is clear,
we may use ~l� and ~c� exchangeably for λ1(l) = c. The correctness of these inference
rules is obvious by definition.

Theorem 1. For every intermediate computation result c← i(p, k, r) labeled by l,
− if ~c� = RUD, then c is uniformly distributed, and hence perfectly masked;
− if ~c� = SID, then c is guaranteed to be perfectly masked.
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Leaf1
λ1(l) ∈ r
~l� = RUD

Leaf2
λ1(l) ∈ p∪ k
~l� = UKD

Leaf3
λ1(l) ∈ {0, 1}
~l� = CST

Xor-Rud1

λ2(l) = ⊕ ~l.lft� = RUD

dom(l.lft) \ semd(l.rgt) , ∅
~l� = RUD

Xor-Rud2

λ2(l) = ⊕ ~l.rgt� = RUD

dom(l.rgt) \ semd(l.lft) , ∅
~l� = RUD

AO-Rud1

λ2(l) ∈ {∧,∨} ~l.rgt� < {UKD, NPM}
~l.lft� = RUD semd(l.lft) ∩ semd(l.rgt) = ∅

~l� = SID
AO-Rud2

λ2(l) ∈ {∧,∨} ~l.lft� < {UKD, NPM}
~l.rgt� = RUD semd(l.rgt) ∩ semd(l.lft) = ∅

~l� = SID

AO-Rud3
λ2(l) ∈ {∧,∨} ~l.lft� = ~l.rgt� = RUD (dom(l.lft) \ semd(l.rgt)) ∪ (dom(l.rgt) \ semd(l.lft)) , ∅

~l� = SID

Sid λ2(l) ∈ {⊕,∧,∨} ~l.rgt� = ~l.lft� = SID semd(l.lft) ∩ semd(l.rgt) = ∅

~l� = SID

Not λ2(l) = ¬

~l� = ~l.lft�
No-Key supp(l) ∩ k = ∅

~l� = SID
Ukd

no-rule is applicable at l

~l� = UKD

Fig. 3. Our semantic type-inference rules. The NPM type is not yet used here; its infer-
ence rules will be added in Fig. 4 since they rely on the SMT solver based analyses.

To improve efficiency, our inference rules may be applied twice, first using the supp
function, which extracts structural information from the program (cf. Section 2.1) and
then using the semd function, which is slower to compute but also significantly more
accurate. Since semd(l) ⊆ supp(l) for all l ∈ N, this is always sound. Moreover, type
inference is invoked for the second time only if, after the first time, ~l� remains UKD.

Example 1. When using type inference with supp on the running example, we have

~r1� = ~r2� = ~r3� = ~c1� = ~c2� = ~c3� = RUD, ~k� = ~c4� = ~c5� = ~c6� = UKD

When using type inference with semd (for the second time), we have
~r1� = ~r2� = ~r3� = ~c1� = ~c2� = ~c3� = ~c4� = ~c5� = RUD, ~k� = UKD, ~c6� = SID

3.2 Checking Semantic Independence
Unlike supp(l), which only extracts structural information from the program and hence
may be computed syntactically, semd(l) is more expensive to compute. In this subsec-
tion, we present a method that leverages the SMT solver to check, for any intermediate
computation result c ← i(p, k, r) and any random bit r ∈ r, whether c is semantically
dependent of r. Specifically, we formulate it as a satisfiability (SAT) problem (formula
Φs) defined as follows:

Θr=0
s (c0, p, k, r \ {r}) ∧ Θr=1

s (c1, p, k, r \ {r}) ∧ Θ,s (c0, c1),

where Θr=0
s (resp. Θr=1

s ) encodes the relation i(p, k, r) with r replaced by 0 (resp. 1), c0
and c1 are copies of c and Θ,s asserts that the outputs differ even under the same inputs.

In logic synthesis and optimization, when r < semd(l), r will be called the don’t
care variable [36]. Therefore, it is easy to see why the following theorem holds.

Theorem 2. Φs is unsatisfiable iff the value of r does not affect the value of c, i.e., c is
semantically independent of r. Moreover, the formula size of Φs is linear in |P|.
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Cp-Rud ~c1, · · · , ck� = RUD ~ck+1� = RUD semd(c1, · · · , ck) ∩ semd(ck+1) = ∅

~c1, · · · , ck+1� = RUD

Cp-Sid1
~c1, · · · , ck�, ~ck+1� ∈ {SID, RUD} ~ck+1� , ~c1, · · · , ck� semd(c1, · · · , ck) ∩ semd(ck+1) = ∅

~c1, · · · , ck+1� = SID

Cp-Sid2
~c1, · · · , ck� = RUD ~ck+1� = RUD (dom(c1, · · · , ck) \ semd(ck+1)) ∩ (dom(ck+1) \ semd(c1, · · · , ck)) , ∅

~c1, · · · , ck+1� = SID

Cp-Ukd
no-rule is appliable at {c1, · · · , ck+1}

~c1, · · · , ck+1� = UKD

Fig. 4. Our composition rules for handling sets of intermediate computation results.

3.3 Verifying Higher-Order Masking
The type system so far targets first-order masking. We now outline how it extends
to verify higher-order masking. Generally speaking, we have to check, for any k-set
{c1, · · · , ck} of intermediate computation results such that k ≤ d, the joint distribution is
either randomized to uniform distribution (RUD) or secret independent (SID).

To tackle this problem, we lift supp, semd, unq, and dom to sets of computation
results as follows: for each k-set {c1, · · · , ck},

– supp(c1, · · · , ck) =
⋃

i∈[k] supp(ci);
– semd(c1, · · · , ck) =

⋃
i∈[k] semd(ci);

– unq(c1, · · · , ck) =
(⋃

i∈[k] unq(ci)
)
\
⋃

i, j∈[k]
(
supp(ci) ∩ supp(c j)

)
; and

– dom(c1, · · · , ck) =
(⋃

i∈[k] dom(ci)
)
∩ unq(c1, · · · , ck).

Our inference rules are extended by adding the composition rules shown in Fig. 4.

Theorem 3. For every k-set {c1, · · · , ck} of intermediate computations results,
– if ~c1, · · · , ck� = RUD, then {c1, · · · , ck} is guaranteed to be uniformly distributed,

and hence perfectly masked;
– if ~c1, · · · , ck� = SID, then {c1, · · · , ck} is guaranteed to be perfectly masked.

We remark that the semd function in these composition rules could also be safely re-
placed by the supp function, just as before. Furthermore, to more efficiently verify that
program P is perfect masked against order-d attacks, we can incrementally apply the
type inference for each k-set, where k = 1, 2, . . . , d.

4 The Gradual Refinement Approach
In this section, we present our method for gradually refining the type inference system
by leveraging SMT solver based techniques. Adding solvers to the sound type system
makes it complete as well, thus allowing it to detect side-channel leaks whenever they
exist, in addition to proving the absence of such leaks.

4.1 SMT-based Approach

For a given computation c ← i(p, k, r), the verification of perfect masking (Definition
2) can be reduced to the satisfiability of the logical formula (Ψ ) defined as follows:
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∃p.∃k.∃k′.
(∑

vr∈{0,1}|r| i(p, k, vr) ,
∑

vr∈{0,1}|r| i(p, k′, vr)
)
.

Intuitively, given values (vp, vk) of (p, k), count =
∑

vr∈{0,1}|r| i(vp, vk, vr) denotes the
number of assignments of the random variable r under which i(vp, vk, r) is evaluated to
logical 1. When random bits in r are uniformly distributed in the domain {0, 1}, count

2|r| is
the probability of i(vp, vk, r) being logical 1 for the given pair (vp, vk). Therefore, Ψ is
unsatisfiable if and only if c is perfectly masked.

Following Eldib et al. [27,26], we encode the formula Ψ as a quantifier-free first-
order logic formula to be solved by an off-the-shelf SMT solver (e.g., Z3):

(
∧2|r`1

r=0 Θ
r
k) ∧ (

∧2|r`1
r=0 Θ

r
k′ ) ∧ Θb2i ∧ Θ,

– Θv
k (resp.Θv

k′ ) for each r ∈ {0, · · · , 2|r`1}: encodes a copy of the input-output relation
of i(p, k, r) (resp. i(p, k′, r)) by replacing r with concrete values r. There are 2|r|

distinct copies, but share the same plaintext p.
– Θb2i: converts Boolean outputs of these copies to integers (true becomes 1 and false

becomes 0) so that the number of assignments can be counted.
– Θ,: asserts the two summations, for k and k′, differ.

Example 2. In the running example, for instance, verifying whether node c4 is perfectly
masked requires the SMT-based analysis. For brevity, we omit the detailed logical for-
mula while pointing out that, by invoking the SMT solver six times, one can get the
following result: ~c1� = ~c2� = ~c3� = ~c4� = ~c5� = ~c6� = SID.

Although the SMT formula size is linear in |P|, the number of distinct copies is expo-
nential of the number of random bits used in the computation. Thus, the approach cannot
be applied to large programs. To overcome the problem, incremental algorithms [27,26]
were proposed to reduce the formula size using partitioning and heuristic reduction.
Incremental SMT-based algorithm. Given a computation c ← i(p, k, r) that corre-
sponds to a subtree T rooted at l in the DDG, we search for an internal node ls in T (a
cut-point) such that dom(ls) ∩ unq(l) , ∅. A cut-point is maximal if there is no other
cut-point from l to ls. Let T̂ be the simplified tree obtained from T by replacing every
subtree rooted by a maximal cut-point with a random variable from dom(ls) ∩ unq(l).
Then, T̂ is SID iff T is SID.

The main observation is that: if ls is a cut-point, there is a random variable r ∈
dom(ls) ∩ unq(l), which implies λ1(ls) is RUD. Here, r ∈ unq(l) implies λ1(ls) can be
seen as a fresh random variable when we evaluate l. Consider the node c3 in our running
example: , it is easy to see r1 ∈ dom(c2)∩unq(c3). Therefore, for the purpose of verifying
c3, the entire subtree rooted at c2 can be replaced by the random variable r1.

In addition to partitioning, heuristics rules [27,26] can be used to simplify SMT
solving. (1) When constructing formulaΦ of c, all random variables in supp(l)\semd(l),
which are don’t cares, can be replaced by constant 1 or 0. (2) The No-Key and Sid rules
in Fig. 3 with the supp function are used to skip some checks by SMT.

Example 3. When applying incremental SMT-based approach to our running example,
c1 has to be decided by SMT, but c2 is skipped due to No-Key rule.

As for c3, since r1 ∈ dom(c2)∩ unq(c3), c2 is a cut-point and the subtree rooted at c2
can be replaced by r1, leading to the simplified computation r1 ⊕ (r2 ⊕ k) – subsequently
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AO-Npm1

λ2(l) ∈ {∧,∨} ~l.rgt� = NPM ~l.lft� = RUD

semd(l.lft) ∩ semd(l.rgt) = ∅

~l� = NPM
AO-Npm2

λ2(l) ∈ {∧,∨} ~l.lft� = NPM ~l.rgt� = RUD

semd(l.rgt) ∩ semd(l.lft) = ∅

~l� = NPM

AO-Npm3

λ2(l) ∈ {∧,∨} ~l.rgt� = NPM ~l.lft� = RUD

dom(l.lft) \ semd(l.rgt) , ∅
~l� = NPM

AO-Npm4

λ2(l) ∈ {∧,∨} ~l.lft� = NPM ~l.rgt� = RUD

dom(l.rgt) \ semd(l.lft) , ∅
~l� = NPM

Cp-Npm ~ck+1� = NPM

~c1, · · · , ck+1� = NPM

Fig. 5. Complementary rules used during refinement of the type inference (Fig. 3).

it is skipped by the Sid rule with supp. Note that the above Sid rule is not applicable to
the original subtree, because r2 occurs in the support of both children of c3.

There is no cut-point for c4, so it is checked using the SMT solver. But since c4 is
semantically independent of r1 (a don’t care variable), to reduce the SMT formula size,
we replace r1 by 1 (or 0) when constructing the formula Φ.

4.2 Feeding SMT-based Analysis Results back to Type System

Fig. 6. Example for feeding back.

Consider a scenario where initially the type sys-
tem (cf. Section 3) failed to resolve a node l, i.e.,
~l� = UKD, but the SMT-based approach resolved
it as either NPM or SID. Such results should be
fed back to improve the type system, which may
lead to the following two favorable outcomes: (1)
marking more nodes as perfectly masked (RUD or
SID) and (2) marking more nodes as leaky (NPM),
which means we can avoid expensive SMT calls
for these nodes. More specifically, if SMT-based
analysis shows that l is perfectly masked, the type of l can be refined to ~l� = SID; feed-
ing it back to the type system allows us to infer more types for nodes that structurally
depend on l.

On the other hand, if SMT-based analysis shows l is not perfectly masked, the type
of l can be refined to ~l� = NPM; feeding it back allows the type system to infer that
other nodes may be NPM as well. To achieve what is outlined in the second case above,
we add the NPM-related type inference rules shown in Fig. 5. When they are added to
the type system outlined in Fig. 3, more NPM type nodes will be deduced, which allows
our method to skip the (more expensive) checking of NPM using SMT.

Example 4. Consider the example DDG in Figure 6. By applying the original type in-
ference approach with either supp or semd, we have

~c1� = ~c4� = RUD, ~c2� = ~c3� = ~c6� = SID, ~c5� = ~c7� = UKD.

In contrast, by applying SMT-based analysis to c5, we can deduce ~c5� = SID. Feeding
~c5� = SID back to the original type system, and then applying the Sid rule to c7 =

c5 ⊕ c6, we are able to deduce ~c7� = SID. Without refinement, this was not possible.

10



Algorithm 1: Function SCInfer(P, p, k, r, π)
1 Function SCInfer(P, p, k, r, π)
2 foreach l ∈ N in a topological order do
3 if l is a leaf then π(l) := ~l�;
4 else
5 TypeInfer(l, P, p, k, r, π, supp);
6 if π(l) = UKD then
7 let P̂ be the simplified tree of the subtree rooted by l in P;
8 TypeInfer(l, P̂, p, k, r, π, semd);
9 if π(l) = UKD then

10 res:=CheckBySMT(P̂, p, k, r);
11 if res=Not-Perfectly-Masked then π(l) := NPM;
12 else if res=Perfectly-Masked then π(l) := SID;
13 else π(l) := UKD;

4.3 The Overall Algorithm

Having presented all the components, we now present the overall procedure, which
integrates the semantic type system and SMT-based method for gradual refinement. Al-
gorithm 1 shows the pseudo code. Given the program P, the sets of public (p), secret
(k), random (r) variables and an empty map π, it invokes SCInfer(P, p, k, r, π) to tra-
verse the DDG in a topological order and annotate every node l with a distribution type
from T. The subroutine TypeInfer implements the type inference rules outlined in Fig. 3
and Fig. 5, where the parameter f can be either supp or semd.

SCInfer first deduces the type of each node l ∈ N by invoking TypeInfer with
f = supp. Once a node l is annotated as UKD, a simplified subtree P̂ of the subtree
rooted at l is constructed. Next, TypeInfer with f = semd is invoked to resolve the UKD
node in P̂. If π(l) becomes non-UKD afterward, TypeInfer with f = supp is invoked
again to quickly deduce the types of the fan-out nodes in P. But if π(l) remains UKD,
SCInfer invokes the incremental SMT-based approach to decide whether l is either SID
or NPM. This is sound and complete, unless the SMT solver runs out of time/memory, in
which case UKD is assigned to l.

Theorem 4. For every intermediate computation result c ← i(p, k, r) labeled by l, our
method in SCInfer guarantees to return sound and complete results:

– π(l) = RUD iff c is uniformly distributed, and hence perfectly masked;
– π(l) = SID iff c is secret independent, i.e., perfectly masked;
– π(l) = NPM iff c is not perfectly masked (leaky);

If timeout or memory out is used to bound the execution of the SMT solver, it is also
possible that π(l) = UKD, meaning c has an unknown distribution (it may or may not be
perfectly masked). It is interesting to note that, if we regard UKD as potential leak and at
the same time. bound (or even disable) SMT-based analysis, Algorithm 1 degenerates
to a sound type system that is both fast and potentially accurate.
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Algorithm 2: Procedure TypeInfer(l, P, p, k, r, π, f )
1 Procedure TypeInfer(l, P, p, k, r, π, f)
2 if λ2(l) = ¬ then π(l) := π(l.lft) ;
3 else if λ2(l) = ⊕ then
4 if π(l.lft) = RUD ∧ dom(l.lft) \ f (l.rgt) , ∅ then π(l) := RUD;
5 else if π(l.rgt) = RUD ∧ dom(l.rgt) \ f (l.lft) , ∅ then π(l) := RUD;
6 else if π(l.rgt) = π(l.lft) = SID ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
7 π(l) := SID
8 else if supp(l) ∩ k = ∅ then π(l) := SID;
9 else π(l) := UKD;

10 else

11 if


(
(π(l.lft) = RUD ∧ π(l.rgt) < {UKD, NPM})∨

(π(l.rgt) = RUD ∧ π(l.lft) < {UKD, NPM})
)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

 then π(l) := SID;

12 else if
(

(dom(l.rgt) \ f (l.lft)) ∪ (dom(l.lft) \ f (l.rgt)) , ∅
∧π(l.lft) = RUD ∧ π(l.rgt) = RUD

)
then

13 π(l) := SID

14 else if


(
(π(l.lft) = RUD ∧ π(l.rgt) = NPM)∨

(π(l.rgt) = RUD ∧ π(l.lft) = NPM)
)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

 then π(l) := NPM;

15 else if
(

(π(l.lft) = RUD ∧ π(l.rgt) = NPM ∧ dom(l.lft) \ f (l.rgt) , ∅)∨
(π(l.rgt) = RUD ∧ π(l.lft) = NPM ∧ dom(l.rgt) \ f (l.lft) , ∅)

)
then

16 π(l) := NPM
17 else if (π(l.lft) = π(l.rgt) = SID) ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
18 π(l) := SID
19 else if supp(l) ∩ k = ∅ then π(l) := SID;
20 else π(l) := UKD;

5 Experiments

We have implemented our method in a verification tool named SCInfer, which uses
Z3 [23] as the underlying SMT solver. We also implemented the syntactic type infer-
ence approach [47] and the incremental SMT-based approach [27,26] in the same tool
for experimental comparison purposes. We conducted experiments on publicly avail-
able cryptographic software implementations, including fragments of AES and MAC-
Keccak [27,26]. Our experiments were conducted on a machine with 64-bit Ubuntu
12.04 LTS, Intel Xeon(R) CPU E5-2603 v4, and 32GB RAM.

Overall, results of our experiments show that (1) SCInfer is significantly more accu-
rate than prior syntactic type inference method [47]; indeed, it solved tens of thousand
of UKD cases reported by the prior technique; (2) SCInfer is at least twice faster than
prior SMT-based verification method [27,26] on the large programs while maintaining
the same accuracy; for example, SCInfer verified the benchmark named P12 in a few
seconds whereas the prior SMT-based method took more than an hour.
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Table 1. Benchmark statistics.
Name Description ]Loc ]Nodes |k| |p| |r|

P1 CHES13 Masked Key Whitening 79 32 16 16 16
P2 CHES13 De-mask and then Mask 67 38 8 0 16
P3 CHES13 AES Shift Rows 21 6 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 6 2 0 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 8 1 0 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2
P7 Logic Design for AES S-Box (2nd implementation) 40 11 2 0 3
P8 Masked Chi function MAC-Keccak (1st implementation) 59 18 3 0 4
P9 Masked Chi function MAC-Keccak (2nd implementation) 60 18 3 0 4

P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 28 3 0 4
P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 28 3 0 4
P12 MAC-Keccak 512b Perfect masked 426k 197k 288 288 3205
P13 MAC-Keccak 512b De-mask and then mask (compiler error) 426k 197k 288 288 3205
P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 426k 197k 288 288 3205
P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 429k 198k 288 288 3205
P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 426k 197k 288 288 3205
P17 MAC-Keccak 512b Unmasking of Pi function 442k 205k 288 288 3205

5.1 Benchmarks

Table 1 shows the detailed statistics of the benchmarks, including seventeen examples
(P1-P17), all of which have nonlinear operations. Columns 1 and 2 show the name of
the program and a short description. Column 3 shows the number of instructions in the
probabilistic Boolean program. Column 4 shows the number of DDG nodes denoting
intermediate computation results. The remaining columns show the number of bits in
the secret, public, and random variables, respectively. Remark that the number of ran-
dom variables in each computation is far less than the one of the program. All these
programs are transformed into Boolean programs where each instruction has at most
two operands. Since the statistics were collected from the transformed code, they may
have minor differences from statistics reported in prior work [27,26].

In particular, P1-P5 are masking examples originated from [10], P6-P7 are origi-
nated from [15], P8-P9 are the MAC-Keccak computation reordered examples origi-
nated from [11], P10-P11 are two experimental masking schemes for the Chi function
in MAC-Keccak. Among the larger programs, P12-P17 are the regenerations of MAC-
Keccak reference code submitted to the SHA-3 competition held by NIST, where P13-
P16 implement the masking of Chi functions using different masking schemes and P17
implements the de-masking of Pi function.

5.2 Experimental Results
We compared the performance of SCInfer, the purely syntactic type inference method
(denoted Syn. Infer) and the incremental SMT-based method (denoted by SMT App).
Table 2 shows the results. Column 1 shows the name of each benchmark. Column 2
shows whether it is perfectly masked (ground truth). Columns 3-4 show the results of
the purely syntactic type inference method, including the number of nodes inferred as
UKD type and the time in seconds. Columns 5-7 (resp. Columns 8-10) show the results of
the incremental SMT-based method (resp. our method SCInfer), including the number
of leaky nodes (NPM type), the number of nodes actually checked by SMT, and the time.
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Table 2. Experimental results: comparison of three approaches.

Name Masked
Syn. Infer [47] SMT App [27,26] SCInfer
UKD Time NPM By SMT Time NPM By SMT Time

P1 No 16 ≈0s 16 16 0.39s 16 16 0.39s
P2 No 8 ≈0s 8 8 0.28s 8 8 0.57s
P3 Yes 0 ≈0s 0 0 ≈0s 0 0 ≈0s
P4 Yes 3 ≈0s 0 3 0.16s 0 0 0.06s
P5 Yes 3 ≈0s 0 3 0.15s 0 2 0.25s
P6 No 2 ≈0s 2 2 0.11s 2 2 0.16s
P7 No 2 0.01s 1 2 0.11s 1 1 0.26s
P8 No 3 ≈0s 3 3 0.15s 3 3 0.29s
P9 No 2 ≈0s 2 2 0.11s 2 2 0.23s

P10 No 3 ≈0s 1 2 0.15s 1 2 0.34s
P11 No 4 ≈0s 1 3 0.2s 1 3 0.5s
P12 Yes 0 1m 5s 0 0 92m 8s 0 0 3.8s
P13 No 4800 1m 11s 4800 4800 95m 30s 4800 4800 47m 8s
P14 No 3200 1m 11s 3200 3200 118m 1s 3200 3200 53m 40s
P15 No 3200 1m 21s 1600 3200 127m 45s 1600 3200 69m 6s
P16 No 4800 1m 13s 4800 4800 123m 54s 4800 4800 61m 15s
P17 No 17600 1m 14s 17600 16000 336m 51s 17600 12800 121m 28s

Compared with syntactic type inference method, our approach is significantly more
accurate (e.g., see P4, P5 and P15). Furthermore, the time taken by both methods are
comparable on small programs. On the large programs that are not perfectly masked
(i.e., P13-P17), our method is slower since SCInfer has to resolve the UKD nodes re-
ported by syntactic inference by SMT. However, it is interesting to note that, on the
perfectly masked large program (P12), our method is faster.

Moreover, the UKD type nodes in P4, reported by the purely syntactic type inference
method, are all proved to be perfectly masked by our semantic type inference system,
without calling the SMT solver at all. As for the three UKD type nodes in P5, our method
proves them all by invoking the SMT solver only twice; it means that the feedback of
the new SID types (discovered by SMT) allows our type system to improve its accuracy,
which turns the third UKD node to SID.

Finally, compared with the original SMT-based approach, our method is at least
twice faster on the large programs (e.g., P12-P17). Furthermore, the number of nodes
actually checked by invoking the SMT solver is also lower than in the original SMT-
based approach (e.g., P4-P5, and P17). In particular, there are 3200 UKD type nodes in
P17, which are refined into NPM type by our new inference rules (cf. Fig. 5), and thus
avoid the more expensive SMT calls.

To sum up, results of our experiments show that: SCInfer is fast in obtaining proofs
in perfectly-masked programs, while retaining the ability to detect real leaks in not-
perfectly-masked programs, and is scalable for handling realistic applications.

5.3 Detailed Statistics

Table 3 shows the more detailed statistics of our approach. Specifically, Columns 2-5
show the number of nodes in each distribution type deduced by our method. Column
6 shows the number of nodes actually checked by SMT, together with the time shown
in Column 9. Column 7 shows the time spent on computing the semd function, which
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Table 3. Detailed statistics of our new method.

Name
SCInfer

Name
Nodes Time

RUD SID CST NPM SMT semd Don’t care SMT Total
P1 16 0 0 16 16 ≈0s ≈0s 0.39s 0.39s
P2 16 0 0 8 8 0.27s 0.14s 0.16s 0.57s
P3 6 0 0 0 0 ≈0s ≈0s ≈0s ≈0s
P4 6 0 0 0 0 ≈0s ≈0s ≈0s 0.06s
P5 6 2 0 0 2 0.08s 0.05s 0.05s 0.25s
P6 4 3 0 2 2 0.05s 0.07s 0.04s 0.16s
P7 5 5 0 1 1 0.14s 0.09s 0.03s 0.26s
P8 11 4 0 3 3 0.14s 0.09s 0.06s 0.29s
P9 12 4 0 2 2 0.13s 0.07s 0.03s 0.23s
P10 20 6 1 1 2 0.15s 0.14s 0.05s 0.34s
P11 19 7 1 1 3 0.23s 0.2s 0.07s 0.5s
P12 190400 6400 0 0 0 ≈0s ≈0s ≈0s 3.8s
P13 185600 6400 0 4800 4800 29m 33s 16m 5s 1m 25s 47m 8s
P14 187200 6400 0 3200 3200 26m 58s 25m 26s 11m 53s 53m 40s
P15 188800 8000 0 1600 3200 33m 30s 33m 55s 1m 35s 69m 6s
P16 185600 6400 0 4800 4800 26m 41s 32m 55s 1m 32s 61m 15s
P17 185600 1600 0 17600 12800 33m 25s 83m 59s 3m 57s 121m 28s

solves the SAT problem. Column 8 shows the time spent on computing the don’t care
variables. The last column shows the total time taken by SCInfer.

Results in Table 3 indicate that most of the DDG nodes in these benchmark pro-
grams are either RUD or SID, and almost all of them can be quickly deduced by our type
system. It explains why our new method is more efficient than the original SMT-based
approach. Indeed, the original SMT-based approach spent a large amount of time on
the static analysis part, which does code partitioning and applies the heuristic rules (cf.
Section 4.1), whereas our method spent more time on computing the semd function.

Column 4 shows that, at least in these benchmark programs, Boolean constants are
rare. Columns 5-6 show that, if our refined type system fails to prove perfect masking, it
is usually not perfectly masked. Columns 7-9 show that, in our integrated method, most
of the time is actually used to compute semd and don’t care variables (SAT), while the
time taken by the SMT solver to conduct model counting (SAT#) is relatively small.

6 Related Work
Many masking countermeasures [41,34,37,15,46,52,17,51,43,48,50] have been pub-
lished over the years: although they differ in adversary models, cryptographic algo-
rithms and compactness, a common problem is the lack of efficient tools to formally
prove their correctness [21,22]. Our work aims to bridge the gap. It differs from
simulation-based techniques [33,3,53] which aim to detect leaks only as opposed to
prove their absence. It also differs from techniques designed for other types of side
channels such as timing [38,2], fault [12,29] and cache [35,40,24], or computing secu-
rity bounds for probabilistic countermeasures against remote attacks [45].

Although some verification tools have been developed for this applica-
tion [10,27,26,6,47,13,7,20,14], they are either fast but inaccurate (e.g., type-inference
techniques) or accurate but slow (e.g., model-counting techniques). For example,
Bayrak et al. [10] developed a leak detector that checks if a computation result is
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logically dependent of the secret and, at the same time, logically independent of any
random variable. It is fast but not accurate in that many leaky nodes could be incor-
rectly proved [27,26]. In contrast, the model-counting based method proposed by Eldib
et al. [27,26,28] is accurate, but also significantly less scalable because the size of log-
ical formulas they need to build are exponential in the number of random variables.
Moreover, for higher-order masking, their method is still not complete.

Our gradual refinement of a set of semantic type inference rules were inspired by
recent work on proving probabilistic non-interference [6,47], which exploit the unique
characteristics of invertible operations. Similar ideas were explored in [7,20,14] as well.
However, these prior techniques differ significantly from our method because their type-
inference rules are syntactic and fixed, whereas ours are semantic and refined based on
SMT solver based analysis (SAT and SAT#). In terms of accuracy, numerous unknowns
occurred in the experimental results of [47] and two obviously perfect masking cases
were not proved in [6]. Finally, although higher-order masking were addressed by prior
techniques [13], they were limited to linear operations, whereas our method can handle
both first-order and higher-order masking with non-linear operations.

An alternative way to address the model-counting problem [19,18,4,32] is to use
satisfiability modulo counting, which is a generalization of the satisfiability problem of
SMT extended with counting constraints [31]. Toward this end, Fredrikson and Jha [31]
have developed an efficient decision procedure for linear integer arithmetic (LIA) based
on Barvinok’s algorithm [8] and also applied their approach to differential privacy.

Another related line of research is automatically synthesizing countermea-
sures [9,44,1,25,7,16,54] as opposed to verifying them. While methods in [9,44,1,7]
rely on compiler-like pattern matching, the ones in [25,16,54] use inductive program
synthesis based on the SMT approach. These emerging techniques, however, are orthog-
onal to our work reported in this paper. It would be interesting to investigate whether
our approach could aid in the synthesis of masking countermeasures.

7 Conclusions and Future Work

We have presented a refinement based method for proving that a piece of cryptographic
software code is free of power side-channel leaks. Our method relies on a set of se-
mantic inference rules to reason about distribution types of intermediate computation
results, coupled with an SMT solver based procedure for gradually refining these types
to increase accuracy. We have implemented our method and demonstrated its efficiency
and effectiveness on cryptographic benchmarks. Our results show that it outperforms
state-of-the-art techniques in terms of both efficiency and accuracy.

For future work, we plan to evaluate our type inference systems for higher-order
masking, extend it to handle integer programs as opposed to bit-blasting them to
Boolean programs, e.g., using satisfiability modulo counting [31], and investigate the
synthesis of masking countermeasures based on our new verification method.
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