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Abstract

Under a relaxed memory model such as TSO or PSO, a concur-
rent program running on a shared-memory multiprocessor may ob-
serve two types of nondeterminism: the nondeterminism in thread
scheduling and the nondeterminism in store buffering. Although
there is a large body of work on mitigating the scheduling nonde-
terminism during runtime verification, methods for soundly miti-
gating the store buffering nondeterminism are lacking. We propose
a new dynamic partial order reduction (POR) algorithm for verify-
ing concurrent programs under TSO and PSO. Our method relies
on modeling both types of nondeterminism in a unified framework,
which allows us to extend existing POR techniques to TSO and
PSO without overhauling the verification algorithm. In addition to
sound POR, we also propose a buffer-bounding method for more
aggressively reducing the state space. We have implemented our
new methods in a stateless model checking tool and demonstrated
their effectiveness on a set of multithreaded C benchmarks.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
gram; D.2.4 [Software Engineering]: Program Verification

Keywords Stateless model checking; partial order reduction; run-
time verification; relaxed memory model; DPOR; TSO; PSO

1. Introduction

Shared-memory multiprocessors are increasingly common in to-
day’s computing systems. To achieve higher performance, they of-
ten implement memory models that are weaker than sequential
consistency (SC) by employing optimizations such as speculative
execution, buffering, and caching. Unlike the more intuitive SC
model [22], where concurrent threads share a single memory that is
always updated instantaneously by write operations, relaxed mem-
ory models can be more complex and sometimes non-intuitive [3],
making program analysis and debugging difficult. For example, un-
der the Total Store Order (TSO) model [30], exhibited by x86 pro-
cessors, a write and a following read in the same thread, but from
a different memory location, may be reordered. Under the Partial
Store Order (PSO) model, which is a relaxation of TSO [40], two

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

writes in the same thread, but to different memory locations, may
also be reordered.

A promising technique for checking reachability properties of
a concurrent program under SC is stateless model checking [18],
which relies on systematic execution of the program to explore its
state space and check whether properties hold at each state. Unlike
their stateful counterparts which require the user to supply a finite-
state model [14], stateless model checkers such as VeriSoft [18],
CHESS [27], and Inspect [43] work directly on the software code
written in languages such as C/C++, Java and C#, thereby making
themselves more broadly applicable.

However, stateless model checkers suffer from the well-known
state explosion problem, i.e., the size of the state space can be
exponential in the size of the program. Although partial order
reduction (POR) techniques [16] have been proposed for mitigating
the scheduling nondeterminism, which is the main source of state
explosion under SC, methods for mitigating the nondeterminism in
store buffering under TSO and PSO are still lacking. In fact, many
existing POR techniques would be subtly unsound when applied to
relaxed memory models. That is, since they assume SC, a program
verified by them as bug free could still exhibit buggy behaviors
when run on microprocessors that implement TSO or PSO.

We propose a new dynamic partial order reduction method
for soundly reducing the state space of a program running under
TSO and PSO. Our method is sound for detecting deadlocks and
assertion violations in a program with a finite and acyclic state
space, which is consistent with existing POR methods [16]. It
mitigates not only the scheduling nondeterminism but also the
nondeterminism in store buffering. Under TSO and PSO, both types
of nondeterminism can lead to an exponential growth of the state
space. However, unlike thread scheduling, in previous stateless
model checkers, it was not possible to model store buffering by
varying the inter-thread order of concurrent operations. As a result,
extending classic POR techniques from SC to TSO and PSO often
requires an overhaul of the underlying verification procedure. In
contrast, we model both types of nondeterminism in a unified
framework, which allows classic POR techniques to be seamlessly
applied to weaker memory models.

To illustrate the challenges in verifying programs under TSO,
consider Figure 1, where the two threads share the variables x and
y. The program can never print out a = 0 and b = 0 under SC.
However, this is possible under TSO because the write of a1 (or b1)
can be delayed past the following read of a2 (or b2). Existing tools
such as VeriSoft [18], CHESS [27], and Inspect [43] cannot expose
this buggy behavior because they assume SC. Furthermore, classic
POR methods such as [16] would be unsound in reducing the state
space of this program. More specifically, there are six possible in-
terleavings under SC, among which three are redundant according
to classic POR techniques. In contrast, under TSO there are twenty-
four possible executions due to the additional nondeterminism in
store buffering. We will show in Section 2 that twenty of them are



int x = y = 0;
1 thread1() {
2 int a;
3 x = 1; //W(x) a1
4 a = y; //R(y) a2
5 printf("a=%d\n", a);
6 }
7 thread2() {
8 int b;
9 y = 1; //W(y) b1
10 b = x; //R(x) b2
11 printf("b=%d\n", b);
12 }

Figure 1. A TSO example.

int x = y = 0;
1 thread1() {
2 x = 1; //W(x) a1
3 y = 1; //W(y) a2
4 }
5
6
7 thread2() {
8 if(y== 1){//R(y) b1
9 if(x==0) //R(x) b2
10 ERROR
11 }
12 }

Figure 2. A PSO example.

redundant and therefore can be skipped by our new dynamic partial
order reduction method.

To illustrate the challenges in verifying programs under PSO,
consider Figure 2, where the two threads use y as a communica-
tion flag. Since the second thread checks the flag before checking
whether x is set to 0 at Line 9, the ERROR label is not reachable
under SC or TSO. However, under PSO, due to the use of separate
store buffers for x and y, the two writes may take effect in a reverse
order, making ERROR reachable. Under both SC and TSO, there
are only three possible executions, but under PSO, there are seven.
We will show in Section 4.4 that our new method can reduce the
number of executions from seven down to three.

Our newmethod models nondeterminism in both thread schedul-
ing and store buffering in a unified framework, by dynamically re-
laxing the enabled set in the DPOR algorithm [16] to capture the
reordering of intra-thread transitions. This is the main difference
from existing works such as Nidhugg [2] and CDSchecker [29].
In Nidhugg, Abdulla et al. proposed a stateless model checking
algorithm for TSO and PSO, which relaxed a source-DPOR al-
gorithm [1] by replacing the classic notion of Mazurkiewicz traces
with a new and canonical partial order representation called chrono-
logical traces. In CDSchecker, Norris and Demsky implemented a
systematic testing algorithm for concurrent data structures running
under the C++11 relaxed memory model, which is different from
TSO and PSO. Our method differs from these works in its unified
modeling of the two sources of nondeterminism, which allows both
persistent set and sleep set based POR techniques to be extended
from SC to PSO and TSO.

In addition to sound POR optimization, we also propose a buffer
bounding (BB) method to more aggressively reduce the state space
while retaining the bug-finding capability as much as possible.
Given a bound on the store buffer size, this method will explore
only those TSO/PSO runs that are feasible under fixed-size store
buffers. Whenever a store buffer is full, a new write would force
the buffer to flush immediately, thereby reducing the nondetermin-
ism in store buffering. This new method is analogous to, but also
independent of context bounding (CB) [8, 27, 32], a popular method
for mitigating the nondeterminism in thread scheduling.

We have implemented our new POR and BB methods in a tool
built upon the stateless model checker Inspect [43], for which we
also developed a front-end using the Clang/LLVM compiler to han-
dle multithreaded C/C++ applications using PThreads. We have
conducted an experimental evaluation on a large set of benchmark
programs, including 121 litmus tests for x86-TSO and 15 multi-
threaded programs from SV-COMP [36]. The results show that our
methods are effective in detecting TSO/PSO related failures and
efficient in reducing the state space.

To sum up, we make the following contributions:

1. We propose a dynamic partial order reduction method for
soundly reducing the state space during runtime verification
of a concurrent program under TSO/PSO.

2. We also propose a heuristic method based on buffer bounding,
which is a supplemental reduction technique aiming to quickly
find violations rather than verifying their absence.

3. We implement these new methods in a runtime verification tool
for stateless model checking of multithreaded programs.

4. We conduct experiments on a set of C programs to demonstrate
the effectiveness of the proposed methods.

The remainder of this paper is organized as follows. First, we
use examples in Section 2 to motivate our work. Then, we establish
the notation in Section 3, before presenting our new method in Sec-
tion 4. We present our buffer-bounding optimization in Section 5.
We present our experimental results in Section 6, review related
work in Section 7, and finally give our conclusions in Section 8.

2. Overview

In this section, we explain how we model the two types of nondeter-
minism in a unified framework, before illustrating how our method
works on the running example in Figure 1.

2.1 Modeling Nondeterminism

Our idea is to model the two types of nondeterminism using the
same interleaving graph, which forms the foundation for analyzing
POR methods and allows them to seamlessly be extended from SC
to TSO and PSO.

Consider the two threads on the left-hand side of Figure 3 (a),
where thread T2 writes to x and y before reading from x. Under
SC, there are four possible interleavings between a1 in thread T1

and b1. . . b3 in thread T2, as shown in the graph on the right-
hand side. Here, each node represents a global control state, i.e.,
a combination of each thread’s program location, and each edge
represents an instruction in either thread. For example, from the
initial state s1, one can execute a1 from thread T1, or b1 from
thread T2. If b1 is executed, we move to the state s2, where either
a1 or b2 can be executed. Under SC, we say that a1 and b1 are
enabled at s1, denoted enabledSC (s1) = {a1, b1}. Similarly, we
have enabledSC (s2) = {a1, b2}.

To model the per-thread store buffer in TSO, we imagine that
each thread has a shadow thread running concurrently and sharing
a store buffer with the original thread. Each write in the original
thread is implemented as two elementary operations: a buffer-write
(BW ) by the original thread, followed by a memory-write (Wτ ) by
the shadow thread. As shown on the left-hand side of Figure 3 (b),
there is a causal order (must-happen-before) between BW and the
corresponding Wτ . Furthermore, there is a causal order between
BW (x) and R(x) in the original thread to ensure the read-from-
own-write requirement of TSO, i.e., a read (b3) always gets the
most recent value written by the same thread (b1).

Now, the program’s behavior under TSO can be characterized
by the set of all possible interleavings of the original and shadow
threads, subjecting to the causal ordering edges. This method for
modeling store buffering directly follows the definition of TSO,
where data in the store buffer are flushed to the main memory
nondeterministically (as modeled by the shadow thread). Since
BW operations are local to the original thread (e.g., thread T2’s
BW (x) and BW (y) are invisible to thread T1), they are omitted
in the new interleaving graph shown on the right-hand side. As
a result, only a1 and b1 can be executed in state s1, but both
b2 and b3 can be executed in state s2, together with a1. That is,
enabledTSO (s1) = {a1, b1}.

We say that the two types of nondeterminism are modeled uni-
formly because, from the new interleaving graphs alone, it is no
longer possible to distinguish edges from the scheduling nondeter-
minism or store-buffer nondeterminism. As a result, during state-
less model checking, where the goal is to systematically explore
all paths of the interleaving graph, we do not need to distinguish
one type of edge from another. This is the reason why classic POR
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Figure 3. Modeling nondeterminism under SC, TSO, and PSO.
Dashed edges are happens-before causality edges

methods, which are designed to prune away redundant paths in the
interleaving graph under SC, can be extended using our method to
TSO and PSO without significant modifications.

To model the per-address store buffers in PSO, we assume
that there are multiple shadow threads correspond to each original
thread, one for each memory address written by the original thread.
This is shown on the left-hand side of Figure 3 (c). Since BW (x)
and BW (y) write to different buffers, there is no longer a causal or-
der between b1 and b2, thereby allowing their execution order to be
reversed. With this in mind, we can construct the new interleaving
graph shown on the right-hand side of Figure 3 (c). Compared to the
interleaving graphs for SC and TSO, there are more paths allowed.
For example, both of the two writes b1 and b2 can be executed at
state s1, denoted enabledPSO(s1) = {a1, b1, b2}. Similarly, we
have enabledPSO (s2) = {a1, b2, b3}.

2.2 Partial Order Reduction for TSO/PSO

Knowing that the interleaving graphs for SC, TSO, and PSO cap-
ture all possible executions of the program under each memory
model, we now explain how to soundly reduce the state space dur-
ing stateless model checking.

Consider the running example in Figure 1. Under SC, there are
six possible interleavings, three of which can be skipped by classic
POR methods because they do not exhibit any additional behavior:

• sc1 = ◦
a1−→ ◦

a2−→ ◦
b1−→ ◦

b2−→ ◦

• sc2 = ◦
a1−→ ◦

b1−→ ◦
a2−→ ◦

b2−→ ◦

• sc3 = ◦
a1−→ ◦

b1−→ ◦
b2−→ ◦

a2−→ ◦ (eqv. to sc2; skip)

b1
a2

b2 b2

a2 b1
b2a1

a1

b2 a1 a1
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sc1 sc4 sc5 sc6sc3sc2
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Figure 4. Example: valid interleavings of the program in Figure 1
under SC and TSO. There are 6 SC runs (three are redundant) and
24 TSO runs (twenty are redundant).

• sc4 = ◦
b1−→ ◦

a1−→ ◦
a2−→ ◦

b2−→ ◦ (eqv. to sc2; skip)

• sc5 = ◦
b1−→ ◦

a1−→ ◦
b2−→ ◦

a2−→ ◦ (eqv. to sc2; skip)

• sc6 = ◦
b1−→ ◦

b2−→ ◦
a1−→ ◦

a2−→ ◦

Trace sc3 is equivalent to sc2 because changing the order of b2 :
R(x) and a2 : R(y), which access different memory locations,
does not affect the result. Similarly, traces sc4 and sc5 are equiva-
lent to sc2 because the order of a1 and b1 is immaterial. As a result,
the stateless model checker only needs to explore sc1, sc2, and sc6.
In this case, classic POR methods [16] work well.

Under TSO, however, classic POR methods do not work nearly
as well. As shown in Figure 4, the store buffer in thread T1 can
cause a2 to be reordered before a1, and the store buffer in thread
T2 can cause b2 to be reordered before b1. The combined impact
of thread scheduling and store buffering would lead to twenty-four
possible executions. Our new method will be able to systematically
explore the state space and prune away the twenty redundant exe-
cutions, thereby reducing the number of valid and irredudant TSO
executions down to four, shown as follows:

• tso1 = ◦
a1−→ ◦

a2−→ ◦
b1−→ ◦

b2−→ ◦ (same as sc1)

• tso2 = ◦
a1−→ ◦

b1−→ ◦
a2−→ ◦

b2−→ ◦ (same as sc2)

• tso19 = ◦
b2−→ ◦

a1−→ ◦
a2−→ ◦

b1−→ ◦

• tso20 = ◦
b2−→ ◦

a1−→ ◦
b1−→ ◦

a2−→ ◦ (eqv. to sc6)

Among these four, tso19 is not equivalent to any SC execution—it
represents a new behavior unique to TSO.

It should not come as a surprise that tso20 is actually equiva-
lent to sc6, even though tso20 can never be produced under SC.
They are equivalent under TSO because b1 is independent of both
b2 and a1, and by repeatedly swapping its order with respect to
b2 and a1, we can transform sc6 into the equivalent run tso20; by
Mazurkiewicz’s trace theory [26] applied to our relaxed interleav-
ing graph, they are equivalent.

During stateless model checking, we perform this equivalence
based pruning on the fly. That is, we will explore only the four
marked TSO executions shown in Figure 4 while having a guaran-
tee of covering all possible TSO behaviors.

3. Preliminaries

This section provides the background information on memory mod-
els and stateless model checking.

3.1 Concurrent Systems

First, we introduce our model of a concurrent system. The system
includes a finite number of threads communicating through a set of
shared objects. A shared object can be any shared memory location,



mutex lock, or condition variable. Each thread itself is a sequential
program consisting of a finite number of statements. A statement
on a shared object is said to be visible. Any other statement is
considered to be invisible. Only one shared object can be accessed
by a visible statement at time. Each visible statement is considered
to be atomic. A statement can block if it cannot be executed due to
the state of the program, e.g., when a mutex lock is held by a thread
then all subsequent lock statements on the same lock will block.

We consider each dynamic execution of a statement in the
program to be distinct. Let stmts be the set of all statements in
a program. Each execution of st ∈ stmts is a transition. We
represent a transition by the tuple 〈tid , type , var , val〉, where tid
is the thread’s ID, type is the statement’s type, var is the shared
object being accessed, and val (optional) is the value used in the
statement. A transition may have one of the following forms:

1. 〈tid , load , var〉 is a read from global variable var,
2. 〈tid , store , var , val〉 is a write of val to variable var,
3. 〈tid , fork , var〉 creates the child thread var,
4. 〈tid , join, var〉 joins the child thread var,
5. 〈tid , lock , var〉 acquires the lock var,
6. 〈tid , unlock , var〉 releases the lock variable var,
7. 〈tid ,wait , var〉 waits on condition variable var, and
8. 〈tid ,notify , var〉 wakes up a transition waiting on var.

A thread is disabled if it cannot executes the next statement. For
example, a thread trying to acquire a mutex lock held by another
thread, or waiting for a condition variable not yet set by another
thread, or joining with a child thread not yet terminated, is disabled.
If a thread is not disabled, it is enabled. Two transitions are co-
enabled in a state s if they are both enabled in s.

We define a state in the system as the union of the states of
all the threads. Since the concrete state (content of the shared
memory) is not stored during stateless model checking, each state
is uniquely identified by the sequence of transitions executed by
all threads. The concurrent system is, formally, a transition system
A = (S,∆, s0), where S is the set of all possible states,∆ ⊆ S×S
is the transition relation, and s0 is the initial state. We use the

notation s
t
−→ s′ to denote that executing the transition t from s

leads to the state s′. We consider a state s′ to be reachable from s
if there exists a sequence of transitions starting from s and ending

at s′ (s
t1−→ s1

t2−→ . . .
tn−→ s′). We assume that there are no cycles

in the state space: executing a transition always creates a new state,
which is consistent with the existing stateless model checkers.

3.2 Memory Models

The most intuitive memory model in concurrent systems is sequen-
tial consistency (SC) [22], which says that “the result of any SC
execution is the same as if the operations of all the processors were
executed in some sequential order and the operations of each in-
dividual processor appears in the sequence in the order specified
by its program.” That is, instructions from the same threads follow
their order in the program (called the program order) and a write
operation updates the memory instantaneously with respect to other
memory reads (called write-atomicity). In contrast, TSO and PSO
are deviations from SC by relaxing the program-order and write-
atomicity requirements differently.

TSO can be viewed as a visible consequence of store buffering,
where each processor has a FIFO buffer of the pending memory
writes [33] to avoid blocking while a write completes. As a result,
TSO relaxes the intra-thread program order by allowing a write and
a following read from a different memory location to be reordered.
Regarding the write-atomicity requirement, TSO allows a proces-
sor to read the value of its own most recent write from the store
buffer, but prohibits it from reading the value of another proces-
sor’s write before the write is made visible to all other processors,
i.e., until the thread’s store buffer is flushed to the memory.

PSO can also be viewed as a visible consequence of store buffer-
ing, where each processor has multiple FIFO buffers of the pend-
ing memory writes, potentially one buffer per memory address [40].
Regarding the intra-thread program order, PSO not only allows the
reordering of a write and a following read, but also two consec-
utive writes to different memory addresses. Regarding the write-
atomicity requirement, PSO allows a processor to read the value
of its own most recent write from the FIFO buffer, but prohibits it
from reading the value of another processor’s write before the write
is made visible to all other processors.

3.3 Stateless Model Checking

Stateless model checking [18] is a method to systematically ex-
plore the state space of a concurrent system. In contrast to its state-
ful counterpart [14, 19], a stateless model checker does not store
the concrete states of the system. Instead, abstract states are used
where each state is uniquely identified by the sequence of transi-
tions executed starting from the initial state s0—this is possible as
long as each thread is a deterministic sequential program and the
only source of nondeterminism comes from the thread interleaving.
Therefore, instead of exploring the reachable states, the procedure
systematically explores the set of execution traces of the system.

Partial order reduction (POR) techniques have been widely
used in model checking, which group execution traces into equiva-
lence classes and then explore at least one representative from each
equivalence class. The soundness of POR relies on the notion of
Mazurkiewicz trace [26], which formally defines the condition un-
der which two traces are equivalent. Specifically, two transition se-
quences, ρ1 and ρ2, are equivalent if and only if ρ1 can be obtained
from ρ2 by repeatedly permuting independent adjacent transitions.
This is because, when two transitions t1 and t2 are independent,
executing t1t2 and t2t1 leads to the same state.

Since the correctness of POR rests on the underlying depen-
dency relation that defines the Mazurkiewicz trace, when extend-
ing the method from SC to TSO and PSO, we can switch one de-
pendency relation with another without significantly modifying the
stateless model checking algorithm. Under SC, two transitions are
dependent if they are from the same thread, or if they are from dif-
ferent threads, access the same memory address, and at least one
of them is a write. In contrast, under TSO and PSO, two transitions
may be considered as independent even if they are from the same
thread, e.g., a write and the following read from a different memory
location. We shall expand the definition of the dependency relation
from SC to TSO/PSO in the later sections.

Similar to many existing POR methods, the correctness of our
method for pruning redundant interleavings will rest on the notion
of persistent sets. A persistent set at a state s is a subset T of the
transitions enabled at state s such that each transition not in T is
independent with T . It has been proved [17] that exploring only
transitions in the persistent set of each state guarantees detection of
all reachability errors, such as deadlock and assertion violations, in
a program with an acyclic state space. Below is a formal definition
of the persistent set (cf. [17]).

DEFINITION 1. A set T of transitions enabled in a state s is persis-
tent iff for all nonempty sequences of transitions of the form

s = s1
t1−→ s2

t2−→ s3...
t
n−1

−−−→ sn
tn−→ sn+1 ,

where ti 6∈ T , 1 ≤ i ≤ n, we have tn is independent with all
transitions in T.

Early POR methods statically computed the persistent set [17],
which often leads to overapproximations due to limitations of the
static analysis procedures, such as imprecise alias analysis. Dy-
namic POR (DPOR) [16] addressed this problem by dynamically
computing the necessary transitions to explore using backtrack sets.
Our work builds upon DPOR by extending it from SC to TSO and



PSO. As we will show in the next section, our extension does not
fundamentally alter the algorithm, thereby allowing both persistent-
and sleep-set based optimizations to be carried over.

4. Partial Order Reduction for TSO/PSO

We first generalize the baseline DPOR algorithm [16] for SC, and
then present our extensions from SC to TSO and PSO.

4.1 Generalizing the DPOR Algorithm

Algorithm 1 shows a modification of the DPOR algorithm [16],
where we model the two types of nondeterminism in a unified
framework. The overall flow remains the same, but the definitions
of enabled, done, and backtrack sets are expanded to account for
the additional nondeterminism; when used for SC, the behavior of
this modified algorithm remains the same as the original DPOR
implementation.

Specifically, the enabled set at state s, in the original algorithm,
was defined as the set of threads that can be executed at s. Under
SC, since each thread is a deterministic program, it can execute
at most one transition at any moment. Therefore, the enabled set
of threads is equivalent to the set of immediate next transitions in
these threads. The done set is a subset of the enabled transitions
(threads) that have already been explored at state s—whenever
done becomes the same as enabled, the state subspace starting from
s has been fully explored. The backtrack set is a subset of the
enabled transitions (threads) that is persistent with respect to the
theory of partial order reduction.

Under TSO/PSO, however, a thread may execute more than one
transition at any moment, e.g., the transition may be either a store-
buffer flush or the following read in the same thread. To capture
this nondeterminism, we modify the definitions of enabled, done,
and backtrack sets. Instead of defining them as sets of threads (or
transitions), we now define them as sets of pairs of a thread and its
transitions, denoted {(tid, 〈transitions〉)}. For example, at the
initial state in Figure 4, the enabled set under SC was {1, 2}, indi-
cating that threads T1 and T2 can be executed. With our extension,
the enabled set under SC and TSO are defined as follows:

• SC: enabledSC(s1) = {(1, 〈a1〉), (2, 〈b1〉)}
• TSO: enabledTSO(s1) = {(1, 〈a1, a2〉), (2, 〈b1, b2〉)}

While this is the only modification required to handle TSO and
PSO, we first assume SC while reviewing the basics of DPOR.
We delay the discussion of dynamically computing the enabled
set, implemented in the subroutine UPDATEENABLEDSET (Line
3), until Section 4.4. Under SC, this subroutine has no effect.

Algorithm 1, starting from the initial state s0, performs a depth-
first search of the state space (A). During the depth-first search, the
stack (S) contains a finite sequence of transitions: t0, t1, . . . , tn,
which were each performed from the states s0, s1, . . . , sn−1.

Therefore, S implicitly represents the execution trace s0
t0−→

s1
t1−→ . . .

tn−→ sn−1. As we have already mentioned, each state
s ∈ S has an enabled set, consisting of all transitions that may be
executed from the state s. Each state s also has a done set, con-
sisting of all enabled transitions that have been explored from the
state. Each state s also has a backtrack set, which is the set of en-
abled transitions that still need to be explored from s. For ease of
comprehension, the pseudocode uses the following notation:

• dom(S) is the set { 1, . . . , n } of indices,
• pre(S, i) for i ∈ dom(S) refers to the state si,
• last(S) refers to sn+1,
• Si is transition ti (the i

th transition in S),
• next(s, p) is the set of transitions (unique under SC but not
TSO/PSO) to be executed by thread p in state s,
• S.t appends transition t to S, and
• thd(t) is the thread that executed the transition t.

As in the original DPOR, we define a happens-before relation on
transitions in S = t1 . . . tn, denoted i →S t for any transition t and
index i ∈ dom(S). It is the smallest relation on the set { 1 . . . n }
such that:

1. if i ≤ j and ti is dependent with tj , then i→Stj
2. →S is transitively closed.

Recall that under SC, the transition ti is always dependent with tj if
they are from the same thread, or if they are from different threads,
access the same memory address, and at least one of them is a write.
We will relax the dependency relation for PSO and TSO in the next
subsection.

The DPOR algorithm for SC begins by calling Explore() from
the initial state. The stack (S) contains the sequence of transitions
that have been executed to reach the current state last(S). When
arriving at a new state, the algorithm calls UPDATEBACKTRACK-
INFO(), which checks the next transition of each thread (tn) to
search the stack for the last transition (Si) where

1. Si is dependent and may be co-enabled with tn, and
2. i 6→S tn.

If a transition satisfying the requirements is found, the algorithm
inserts a backtrack point in the state pre(S, i). Intuitively, it aims
to flip the order of these two transitions in a future run. Specifically,
on Line 14, it attempts to find the subset E of enabled transitions
in the state pre(S, i) where each t ∈ E happens-before tn in S.
The set E contains all such transitions in order to allow tn to be
executed before t in future runs. When no such transition is found
(E is empty), the algorithm over-approximates by adding all the
enabled transitions to the backtrack set.

It has been proved [16] that Algorithm 1 visits a set of transi-
tions from each state which contains all the transitions in the per-
sistent set of the state. Since the fundamental theorems proving the
soundness of any PORmethod rest on the fact that the persistent set
from each state is explored, Algorithm 1 is similarly able to soundly
verify reachability properties (such as deadlocks and assertion vio-
lations) in a concurrent program with an acyclic state space.

4.2 Modeling Store Buffers in TSO and PSO

Next, we extend the enabled, backtrack and done sets in Algo-
rithm 1 to handle relaxations in program order constraints caused
by store-buffers from TSO and PSO.

To model TSO, we use the X86-TSO model created by Sewell
et al. [33]. Specifically, we assume that a thread may interact with
memory using the following operations:

• R(x), a read of variable x,
• BW (x), a write to variable x in the thread’s store-buffer,
• Wτ (), a dequeue of the oldest write in the store-buffer.

R(x) is defined in the same manner as before (Section 3.1). Wτ ()
is the nondeterministic flushing of a store-buffer, which may occur
at anytime when the thread is not disabled. In the context of DPOR,
BW (x) is an invisible operation since it only affects the thread’s
store-buffer and does not need to be monitored. In the end, this
model adds one transition type to our state system:Wτ ().

To model PSO, we use the same operations as TSO except
for changing Wτ () to Wτ (x) for some variable x. This operation
dequeues the oldest write to x by the thread. Intuitively, both
definitions—Wτ () and Wτ (x)—match the semantics of having
one store buffer in TSO and multiple store buffers in PSO. In both
cases, we consider the store-buffer(s) to be of infinite length, i.e., a
write to memory could be delayed indefinitely.

For both TSO and PSO, our stateless model checking system
transforms each shared memory write in the program into a store-
buffer write BW . At the next state, the thread will have an enabled
Wτ () orWτ (x) transition in addition to its next program transition.



Algorithm 1Modified DPOR [16] to allow for TSO/PSO behavior. Under SC, the behavior is equivalent to the original implementation.

Initially: Explore({s0})
1: function EXPLORE(S)
2: s← last(S)
3: UPDATEENABLEDSET(S,s) ⊲ This call has no effect under SC. See Algorithm 2.
4: UPDATEBACKTRACKINFO(S,s)
5: if ∃t ∈ enabled(s) then
6: backtrack(s)← {t}
7: done← ∅

8: while ∃t ∈ (backtrack(s) \ done) do
9: add t to done
10: Explore(S.t)

11: function UPDATEBACKTRACKINFO(S,sn)
12: let dom(S) be the set { 1, . . . , n } of indices of states in S up to sn
13: for all transitions tn ∈ next(s, p) of all threads p do
14: if ∃i = max({i ∈ dom(S) | Si is dependent and may be co-enabled with tn and i 6→S tn}) then
15: E ← {t ∈ enabled(pre(S, i)) | thd(t) = thd(tn) or ∃j ∈ dom(S) : j > i and t = Sj and j →s tn}
16: if E 6= ∅ then
17: add any t ∈ E to backtrack(pre(S, i))
18: else
19: add all t ∈ enabled(pre(S , i)) to backtrack(pre(S , i))

A thread will always have aWτ () orWτ (x) transition enabled until
its store-buffer(s) are empty.

For example, consider a thread executing the following state-
ments: x = 5; if (z > 5). After executing x = 5, the
store-buffer, under TSO, will have 5 enqueued into it. At the next
state, the thread will have two enabled transitions:Wτ () and R(z).
Intuitively, the Wτ () operation can be thought of as a shadow
thread, as described in Section 2, which can dequeue the store-
buffer at anytime. But if the read of x is the next program state-
ment in the thread, TSO also guarantees that R(x) gets the value 5
written byWτ ().

Under PSO, the procedure behaves similarly except that, instead
of a singleWτ () operation for each thread, there can be oneWτ (x)
operation for each variable x in a thread.

Fence instructions can be modeled by repeatedly executing
Wτ () or Wτ (x) operations until the buffer(s) are empty. The pro-
gram can execute a fence instruction explicitly, e.g., when such
instruction exists in the program code, or implicitly, e.g., when it
executes synchronization primitives such as lock() and unlock()
that also force the entire store-buffer(s) of the thread to flush.

4.3 Relaxing the Intra-thread Dependency Relation

Armed with the new Wτ () and Wτ (x) operations, we now extend
the enabled, done, and backtrack sets from SC to PSO and TSO
to capture the potentially multiple enabled transitions from each
thread. Here, the Wτ () operation is considered in the same way as
a memory write, since we know the value to be written to a given
memory address when Wτ () is executed. Conveniently, with this
extension, the semantics of Algorithm 1 do not change. The only
difference is in the definition of the intra-thread dependency rela-
tion, which is not to be confused with the inter-thread dependency
relation. Recall that the latter is defined as follows: two transitions
from different threads are dependent iff they access the same mem-
ory and at least one of them is a write. We do not change the defini-
tion of the inter-thread dependency relation.

DEFINITION 2. Under SC, two transitions t1 and t2 executed by
the same thread are always (intra-thread) dependent, denoted
(t1, t2) ∈ DSC .

For TSO and PSO, we choose to define the independence rela-
tion (as opposed to dependence), while assuming that all transitions
that are not independent are dependent.

DEFINITION 3. Under TSO, two transitions t1 and t2 executed by
the same thread are independent, denoted (t1, t2) 6∈ DTSO , iff t1

is a write, t2 is a following read, addr(t1) 6= addr(t2), and for
all t3 in between t1 and t2 (if any), t3 must be a write such that
addr(t3) 6= addr(t2).

DEFINITION 4. Under PSO, two transitions t1 and t2 executed by
the same thread are independent, denoted (t1, t2) 6∈ DPSO, iff t1
is a write, t2 is a following read or write, addr(t1) 6= addr(t2),
and for all t3 in between t1 and t2 (if any), t3 must be a write such
that addr(t3) 6= addr(t2).

For a given dependency relation D (which can be DSC , DTSO,
and DPSO), the enabled set consists of, for each thread, its im-
mediate next transition t1 as well as all following transitions t2
such that (t1, t2) 6∈ D. Therefore, relaxing the dependency rela-
tion from SC to TSO and PSO lead to the expansion of the en-
abled set (and hence the done and backtrack sets), meaning that
previously sequential transitions within a thread may be reordered.
This is the reason why for the initial state s1 of the program in Fig-
ure 2, whose interleaving graph is in Figure 5, the enabled set under
SC and TSO are {(1, 〈a1〉), (2, 〈b1〉)}, whereas enabledPSO (s1 ) =
{(1, 〈a1, a2〉), (2, 〈b1〉)}.

Given that our definitions of DTSO and DPSO directly fol-
low the X86-TSO model [33] and the SPARC manual [40], the
expanded enabled set precisely defines all possible TSO or PSO
relaxations of program order.

4.4 Dynamically Updating the Enabled Set

There are two challenges in modifying the program order of a
thread during DPOR as required by TSO and PSO. First, DPOR
relies on dynamic execution of the program to discover, at each
state s, the set of transitions that may be executed by each thread.
It does not have access to the program paths that are not currently
executed, which is required for computing a sound approximation
of the enabled set. Second, since DPOR concretely executes each
thread, which is a sequential program, it is difficult to perform the
desired modifications to the program order at runtime due to limited
visibility of future transitions.

To understand the issue of limited visibility, consider that a
thread is about to execute x = 5 which, in the SC model, is a
writeW (x). At the current state s, the thread has an enabled transi-
tion which is a write to x. Under TSO, this write can potentially be
re-ordered with any following read by this thread from a different
memory address. As a result, we would like to enable any quali-
fying read along side the write to x. Under PSO, if after writing
to x the thread writes to shared variable y then at the state s both



the write to x and the write to y should be enabled allowing for
their order to be permuted. However, during DPOR, each thread is
running in the native OS environment, executing one transition at a
time, and only the next statement to be executed by each thread can
become visible to the model checker (e.g., thewrite to y cannot be
seen before the write to x is executed).

Our method for dynamically updating the enabled set is simi-
lar, in spirit, to the method for dynamically updating the backtrack
set used in DPOR [16], where the authors faced a similar prob-
lem in computing the backtrack set under SC: statically computing
the set means that it often has to be drastically overapproximated,
which leads to missed opportunities for optimization, whereas dy-
namically updating the set retroactively at run time leads to precise
results. Inspired by the idea, we propose to retroactively update the
enabled set for TSO and PSO during run time.

Our procedure for retroactively updating the enabled set is in-
voked on Line 3 in Algorithm 1. At this moment, we initialize the
enabled set for state s to include the immediate next transitions
from all non-blocking threads. Then, we traverse the stack S back-
wardly to update the enabled sets of the preceding states. If any
transition enabled in s can potentially be reordered with transitions
in a preceding state s′ due to program order relaxations, we will
update the enabled set of s′ recursively. In addition, we will recom-
pute the backtrack information using the new enabled set of state
s′ by invoking the subroutine UPDATEBACKTRACKINFO.

Algorithm 2 shows the pseudocode to dynamically update the
enabled set of each state. Similar to updating the backtrack set
during DPOR, this procedure scans the state stack (S) to find
transitions which are intra-thread independent based on one of the
previous definitions (DSC , DTSO , and DPSO). Since under SC
the program order cannot be modified this procedure does nothing,
whereas under TSO and PSO, it expands the enabled set to include
any future transition that should be included. We use enabled(si , p)
to represent the enabled set of the ith state in S for the pth thread.

Algorithm 2 Procedure to dynamically update the enabled set of
each thread when testing under TSO/PSO.

1: function UPDATEENABLEDSET(S,sn)
2: if Testing under SC then
3: return
4: let D be either DPSO or DTSO depending on the Testing mode
5: modified ← { }
6: let n be the index of last(S)
7: for all transitions tn = next(sn, p) of all threads p do
8: for all j = n− 1, . . . , 1 do
9: for all transitions tj = next(sj , p) do
10: if (tn, tj) 6∈ D then
11: enabled(sj , p)← enabled(sj , p) ∪ { tn }
12: modified ← modified ∪ { sj }

13: for all states sj ∈ modified do
14: UPDATEBACKTRACKINFO(S,sj )

The algorithm takes the current stack S as input and examines
the predecessors of last state in S, denoted sn = last(S). For any
predecessor state sj , the algorithm checks if there are two tran-
sitions tj and tn from the same thread p such that they may be
permuted (i.e., they are intra-thread independent). If such transi-
tions are found, then the enabled set of sj for thread p, denoted
enabled(sj , p), is updated to include the transition tn. Addition-
ally, whenever the enabled set of a predecessor state is updated, its
backtrack set is also updated, by invoking UPDATEBACKTRACK-
INFO. This ensures that the newly enabled transitions can be poten-
tially permuted in future runs. The entire process terminates after
traversing the stack S once backwardly.

Consider the example in Figure 2, which has seven PSO-
compatible runs (three are also SC runs) as shown in Figure 5.

Our method first explores pso1 = ◦
a1−→ ◦

a2−→ ◦
b1−→ ◦

b2−→ ◦.

ERROR

a1

b2 b2

a1

b1

b2
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a2a2

a2
a1 b1
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a2
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Figure 5. The seven PSO-compatible runs for the program in Fig-
ure 2, where four runs are redundant and skipped.

When it reaches state s1 for the first time, enabledPSO(s1 ) is set
to {(1, 〈a1〉), (2, 〈b1〉)} meaning that a1 and b1 are the immedi-
ate next transitions to be executed in threads T1, and T2 respec-
tively. After reaching s2, however, we discover that a2 follows
a1 in thread T1. Since (a1, a2) 6∈ DPSO, we go back to state
s1 and retroactively update its enabled set to enabledPSO (s1 ) =
{(1, 〈a1, a2〉), (2, 〈b1〉)}. As a result, eventually pso5 will be ex-
plored, which represents a behavior that is unique to PSO, i.e., not
possible under SC or TSO. Specifically, in pso5, the second write
(y = 1) in Figure 2 is flushed to the memory before the first write
(x = 1), making the ERROR label at Line 10 reachable. Also
note that our POR method executes only pso1, pso2, and pso5
while completely skipping the other four PSO runs because they
are equivalent to the three explored runs.

THEOREM 1. Our DPORTSO algorithm explores all possible
TSO-compatible execution traces and does not explore any TSO-
incompatible execution trace.

THEOREM 2. Our DPORPSO algorithm explores all possible
PSO-compatible execution traces and does not explore any PSO-
incompatible execution trace.

Since we lift the original DPOR algorithm from SC to TSO
and PSO by relaxing the intra-thread dependency relation DSC ,
which in turn leads to enlarged enabled, done, and backtrack sets
in Algorithm 1, here, we only need to show that the relaxations
are correct. Since our definitions of DTSO and DPSO directly
follow the X86-TSO model [33] and the SPARC manual [40], and
the original DPOR algorithm is known to be sound in pruning
redundant executions [16], the above two theorems hold.

5. Buffer Bounding Based Analysis

Under SC, an important idea for reducing the complexity of con-
currency testing is context bounding (CB) [8, 27, 32], which ex-
plores only executions with a bounded number of preemptive con-
text switches. Although this is an unsound reduction in that it may
miss valid program behaviors, empirical studies show that it is ef-
fective in detecting real bugs, which tend to involve few context
switches. However, context bounding only focuses on mitigating
state explosion caused by the scheduling nondeterminism. We pro-
pose a new buffer bounding method to mitigate the state explosion
caused by the nondeterminism in store buffering. As such, it is com-
plementary to the existing methods on context bounding.

Our default model for TSO/PSO assumes that a write to memory
may be delayed indefinitely. We propose bounding the size of the
store buffers to cut down the search space. The goal is to speed up
testing (quickly finding bugs) as opposed to verification (proving
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Figure 6. Reduction in the number of TSO runs with the buffer
bound (BB) set to 0, 1, 2, 3, and 4, respectively.

the absence of bugs). Whenever a store-buffer of a thread is full,
executing a write operation will force it to flush immediately, to
make room for the new write.

Under the extreme case where the buffer size is set to 0, our
TSO/PSO models would degenerate into SC. Under the other ex-
treme case where the buffer size is set to +∞, our TSO/PSO mod-
els would conform to the TSO/PSO standard. In between 0 and
+∞, the set of runs explored by our method would be a superset of
the runs explored under SC and a subset of the runs explored under
TSO/PSO.

Figure 6 shows an example where one thread executes a1 and
the other thread executes the sequence of instructions b1b2b3b4b5.
The interleaving graph under SC is shown on the left-hand side,
whereas the interleaving graph under TSO is shown on the right-
hand side. Under TSO, the read in b5 may be reordered with all
preceding writes. However, if we bound the store-buffer size to
one, only two of the five permutations, illustrated on the right-hand
side of Figure 6, will be allowed, since b5 cannot only be reordered
before b3. If we bound the store-buffer size to 2, b5 can be reordered
before both b4 and b3, which leads to more valid interleavings.

Although the idea of buffer bounding has been exploited before
in other contexts [23, 24], its effectiveness have not been experi-
mentally evaluated in stateless model checking. We fill the gap by
providing the first implementation as well as experimental evalua-
tion in the following section.

6. Experiments

We have implemented our new methods, along with the original
DPOR [16] with sleep-set reduction for SC, in a software verifica-
tion tool called rInspect. The tool builds upon Inspect [43] and the
popular Clang/LLVM compiler for handling C/C++ code written
for the Linux/PThreads platform. We have conducted experiments
on a large set of publicly available benchmarks. Our evaluation was
designed to answer two research questions:

• Is our unified framework for handling both scheduling and
buffering nondeterminism effective in detecting TSO/PSO re-
lated violations? Is it effective in reducing the search space?
• We proposed buffer-bounding to more aggressively reduce the
search space while retaining the bug-detection capability as
much as possible. Is it effective in practice?

Our benchmarks include 121 small programs, consisting of both
the litmus tests for x86-TSO [4] and nine concurrent C programs
from various prior publications [9, 10], which implement low-level
concurrency protocols. Additionally, we used various versions of
15 multithreaded programs from the concurrency section of the

Table 1. Results on the x86-TSO litmus test programs.

Method Passed Failed Avg. # Runs

DPORSC 121 0 1.0 X
DPORTSO 47 73 5.0 X
DPORPSO 24 97 11.0 X
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Figure 7. Reduction in the number of runs (left) and execution
time in seconds (right) for DPORTSO on SV-COMP programs.

Software Verification Competition (SV-COMP) [36]. All experi-
ments were obtained from a desktop with Intel Core i5-3340 3.10
GHz CPU running 32-bit Linux.

First, we evaluate the effectiveness of our method for detect-
ing assertion violations. Table 1 shows the results of running the
method on the x86-TSO litmus test programs. For all benchmark
programs, our tool has correctly verified the program or detected
the violation. For each memory model, we report the number of
passing (violation free) and failing programs, as well as the normal-
ized average number of runs explored by each method. The normal-
ized number of runs for DPORSC is 1. For DPORTSO, there are on
average five times more runs to be explored. For DPORPSO, there
are eleven times more runs.

The results show that the baseline algorithm DPORSC , while
having a lower number of runs, significantly under-approximates
the behavior of the program under TSO and PSO. As a result,
it would miss many violations. That is, DPORSC may claim the
program as violation free when in fact under TSO and/or PSO the
program has a violation.

Next, we show the effectiveness of our method in pruning re-
dundant runs. Toward this end, we compare the number of runs
explored, and the time taken, by the stateless model checker with
and without our new POR method. Figure 7 shows the results of
running the SV-COMP benchmark programs in two scatter plots,
where the x-axis represents the number of runs (and the time in
seconds) of the baseline stateless model checker under TSO, and
the y-axis represents the same data for DPORTSO. Figure 8 shows
the same type of scatter plots, but for DPORPSO. In these figures,
each point below the diagonal line is a winning case for our method.
These results show that our new POR method significantly reduces
the number of runs and the execution time.

Finally, we evaluate the effectiveness of buffer bounding in re-
ducing the search space while retaining the failure-detection ca-
pability as much as possible. Table 2 shows the number of viola-
tions detected from all benchmark programs by using a bounded
TSO/buffer of size 0, 1, 2, 3, . . . , +∞. The results show that, for
the set of benchmark programs we used, most of the TSO related
violations can be detected using the buffer bound 2 (92% detection
rate) or 3 (97% detection rate).

Figure 9 shows the number of runs explored by TSO/buffer
bounding on a parameterized Dijkstra program from SV-COMP.
As we gradually increase the number of concurrent operations in
the program, we recorded the growth rate in the number of runs
explored by DPORTSO under different buffer bounds. The results
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Figure 8. Reduction in the number of runs (left) and execution
time in seconds (right) for DPORPSO on SV-COMP programs.

Table 2. Bugs detected by DPORTSO with buffer bounding.

BB=0 (SC) BB=1 BB=2 BB=3 BB=+∞

Bugs (%) 0.0 0.3 0.92 0.97 1.0
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Figure 9. The number of runs (y-axis) explored by DPORTSO

with buffer bounding for different program sizes (x-axis).

show that the search space can be significantly reduced with a
small buffer. As we increase the buffer bound, the runtime perfor-
mance increases as well, gradually reaching that of the standard
DPORTSO. Fortunately, from Table 2, we know that even with
BB=2 or 3, we can already detect many TSO-related violations.

7. Related Work

The theoretical aspects of verifying concurrent programs under
relaxed memory models such as TSO/PSO have been well stud-
ied [6, 7, 13]. Specifically, prior works show that reachability in
finite-state programs is decidable for TSO and its extension with
a write-to-write relaxation. In this work, however, our focus is on
improving the practical efficiency of stateless model checking. To-
ward this end, we have proposed a new dynamic POR algorithm for
TSO and PSO.

Dynamic POR was originally proposed by Flanagan and Gode-
froid [16] for SC. The method is practically appealing because it
allows for multithreaded programs written in real languages such
as C++, Java and C# to be handled efficiently. Abdulla et al. [1]
recently extended DPOR to make it provably optimal and applied
it to Erlang. There are also methods for augmenting DPOR with
property driven pruning [37] and assertion guided abstraction [21].
However, these existing methods all assume the SC memory model.

Abdulla et al. [2] independently and concurrently proposed a
stateless model checking algorithm for TSO/PSO, which shares
many similarities with our work. Norris and Demsky [29] also
developed a concurrency testing tool called CDSchecker for the
C++11 memory model. As we have already mentioned, the main
difference between our method and these works is that our method
relies on a unified framework for modeling the two different types
of nondeterminism under TSO/PSO. That is, we dynamically re-
lax the intra-thread program order by incrementally updating the
enabled set.

Linden and Wolper [23, 24] also proposed a method for verify-
ing programs under TSO and PSO. However, their method was de-
veloped in a different context, i.e., to improve explicit-state model
checkers such as SPIN, where the model checker stores the set of
visited program states in memory, whereas our goal is to improve
stateless model checking, where the model checker never explicitly
stores the concrete states.

There are also various heuristic optimization techniques pro-
posed for concurrency testing, but they do not aim to achieve ex-
haustive coverage. These unsound techniques include, for example,
delay bounding, statistical search, context bounding, and synchro-
nization intention [11, 15, 25, 27, 28]. These methods focus primar-
ily on mitigating the nondeterminism in thread scheduling, whereas
our work also handles nondeterminism in store buffering.

Beyond stateless model checking, there are also constraint
solver based symbolic verification methods. For example, Alglave
et al. proposed methods for verifying program under weak mem-
ory via program transformation [5] and methods for speeding up
bounded model checking [4]. Yang et al. [41, 42] also proposed
constraint based methods for checking weak memory models. Fur-
thermore, there is a large body of work on applying POR methods
to stateful model checking [31], and SAT-based model checking
under SC [20, 34, 35, 38, 39]. These methods are orthogonal to our
work.

Finally, hybrid methods have also been proposed in tools such as
CheckFence [10], SOBER [9] and RELAXER [12] to detect bugs
in concurrent programs under TSO and PSO. They first generate
test runs under SC and then amplify these test runs using predic-
tive analysis, to check if any TSO or PSO run inferred from these
SC runs is buggy. These TSO/PSO runs share the same transitions
as the SC trace, but may have varying delay in store buffers. Hy-
brid methods in this group differ from our work in that they do not
focus on improving the quality of dynamic partial order reduction.
Instead, they focus on amplifying existing test runs obtained under
SC to increase the chance of detecting TSO and PSO related viola-
tions.

8. Conclusions

We have presented a new dynamic partial order reduction method
for runtime verification of concurrent programs under TSO and
PSO. Our method is sound for checking reachability properties in a
concurrent program with a finite and acyclic state space. In addition,
we have presented a new method for more aggressively reducing
the state space while trying to detect as many TSO/PSO related
violations as possible. We have implemented both methods in a
runtime verification tool called rInspect for multithreaded C/C++
programs. Our experimental results show that the new methods are
effective in reducing the search space.
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