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ABSTRACT

We propose a new method for runtime prevention of type state vi-
olations in multithreaded applications due to erroneous thread in-
terleavings. The new method employs a combination of static and
dynamic program analysis techniques to control the execution or-
der of the method calls to suppress illegal call sequences. The le-
gal behavior of a shared object is specified by a type-state automa-
ton, which serves as the guidance for our method to delay certain
method calls at run time. Our main contribution is a new theoreti-
cal framework for ensuring that the runtime prevention strategy is
always safe, i.e., they do not introduce new erroneous interleav-
ings. Furthermore, whenever the static program analysis is precise
enough, our method guarantees to steer the program to a failure-
free interleaving as long as such interleaving exists. We have im-
plemented the new method in a tool based on the LLVM compiler
framework. Our experiments on a set of multithreaded C/C++ ap-
plications show that the method is both efficient and effective in
suppressing concurrency related type-state violations.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms

Verification, Reliability

Keywords

Type state automaton, race condition, failure mitigation, program
repair, model checking, partial order reduction

1. INTRODUCTION
We propose a unified runtime mitigation framework for sup-

pressing concurrency related type-state violations in multithreaded
C/C++ applications. Bugs in multithreaded applications are notori-
ous difficult to detect and fix due to interleaving explosion, i.e., the
number of possible interleavings can be exponential in the num-
ber of concurrent operations. Due to scheduling nondeterminism,
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a1:o.init();
a2:o.start();
a3:o.stop();
a4:...

--- [T1] ---

...

...

...
b1:o.destroy();
b2:...

--- [T2] ---

stop
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Figure 1: A client program and the type-state automaton. For
ease of drawing, we have omitted the non-accepting state. How-
ever, there is an implicit edge from every state to the non-
accepting state. For example, from state I, executing any

method other than init() leads to the non-accepting state.

multiple runs of the same application may exhibit different be-
haviors. As a result, existing software tools are often inadequate
in supporting automated diagnosis and prevention of concurrency
bugs. Although there has been some work on mitigating concur-
rency bugs [29, 43, 20, 17, 40, 13, 18, 38], they focus primarily on
the concurrent accesses at the load/store instruction level, thereby
leading to a significant runtime overhead. Our new method, in con-
trast, focus on method calls of the shared objects.
In mainstream object-oriented programming, an application can

be divided into two parts: a library of objects and the client that
utilizes these objects. While developing the client, the program-
mer needs to follow a set of usage rules that defines the application
programming interface (API). Type-state automaton can be used to
specify the temporal aspects of the API that standard type systems
cannot express. As illustrated in Figure 1 (right), the automaton is
a graph where nodes are the abstract states of the object and edges
are the method calls. A sequence of method calls is valid if and
only if it corresponds to a path in the automaton.
When an object is shared by threads as in Figure 1 (left), its

method call sequence depends on the thread execution order. This
may lead to concurrency bugs. For example, the automaton in Fig-
ure 1 says that start() and stop() can be invoked only after the
call to init() and before the call to destroy(). When thread T1

completes before thread T2 starts, the resulting call sequence sat-
isfies this specification. However, when the thread interleaving is
a1, b1, a2, a3, . . ., the program violates this specification. In this
case, the client program may crash due to the use of a destroyed
object. Type-state violations of this kind appear frequently in real-
world multithreaded applications, often marked in bug databases as
race conditions by developers. Such Heisenbugs are often difficult
to detect and diagnose, due to the often astronomically many thread
interleavings in the programs.
Our method can be viewed as a runtime mitigation technique for

suppressing such violations. We insert a layer between the client
and the library to control method calls issued by the client, to avoid
the erroneous usage. For example, we may delay certain method



calls if such runtime action can help enforce the desired client pro-
gram behavior as specified in the type-state automaton. Alterna-
tively, our method can be understood as hardening the client pro-
gram so that it emits only correct method call sequences.
The overall flow of our method is illustrated in Figure 2, which

takes the client and the type-state automaton as input and gener-
ates a new client program and its control flow information as out-
put. In the new client program, runtime monitoring and control
routines such as pre_call() have been injected to add runtime
analysis and failure prevention capabilities. The new client pro-
gram is compiled with the original library to create an executable.
At run time, the control strategy implemented inside pre_call()
will be able to selectively delay certain method calls, to allow only
correct method sequences as specified in the type-state automaton.
The decision on when to delay which thread will depend on an on-
line analysis of the type-state automaton, as well as its interaction
with the control flow graph of the client program.
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Figure 2: Preventing concurrency type-state errors.

An important requirement for runtime error prevention is that the
actions must do no harm. That is, they should not introduce new
bugs. Traditionally, this requirement has been difficult to satisfy
in ad hoc error mitigation methods. The main contribution of this
paper is to propose a unified theoretical framework within which
various strategies can be analyzed to ensure that they are always
safe. More specifically, we guarantee that our prevention strate-
gies do not introduce new concurrency related bugs. Furthermore,
when the static analysis is precise enough, our runtime mitigation
method can always find the failure-free interleaving whenever such
interleaving exists. The underlying theory for this framework is ab-
stract model checking. To the best of our knowledge, this is so far
the best result that can be achieved by a runtime mitigation algo-
rithm. To put it into context, most of the existing runtime mitiga-
tion methods cannot guarantee safety, i.e., the runtime mitigation
actions may lead to artificial deadlocks, which have to be reported
to the developers [21] or bailed out by adding a timeout.
Our method also differs from most of the existing methods for

tolerating concurrency bugs [29, 43, 20, 17, 40, 13, 18, 38], in that
they focus exclusively on low level races. Since they often have
to monitor the individual load/store instructions for shared mem-
ory accesses, the runtime performance overhead can be substantial.
For example, the purely software based solution in AVIO-S [19]
imposes an average slowdown of 25X (their AVIO-H imposes only
0.4-0.5% overhead but requires the support of a specially designed
microprocessor hardware). In contrast, our purely software based
method has to monitor only the relevant API calls involved in the
shared objects. Therefore, it can maintain a significantly smaller
performance overhead – our experimental evaluation shows an av-
erage slowdown of only 1.45% on C/C++ applications.
Concurrency related type-state violations are actually more com-

mon than they may appear despite the fact that they are not yet ad-
equately addressed in the literature. On one hand, any low-level
race on shared memory accesses eventually has to manifest itself
at the method call level. On the other hand, it is almost impos-
sible to have concurrency related type-state violations if there are

no low-level races inside the methods. Therefore, type-state vio-
lations and low-level races should be considered as symptoms that
are manifested by the same errors, but at different abstraction lev-
els. For the purpose of runtime failure mitigation, we argue that
raising the level of abstraction has the advantage of very low run-
time overhead, as well as the availability of type-state automata as
the clearly defined correctness conditions.
Having a clearly defined correctness condition is crucial to en-

sure that the mitigation actions do not introduce new bugs because
it provides a clearly defined goal. In runtime mitigation of low-level
races, such correctness conditions are generally not available. In-
stead, existing methods often resort to profiling and replay, leading
to a notion of correctness that is at best statistical, rather than cate-
gorical. For example, automatically inferred atomic regions may be
bogus and data-races may be benign, which make it difficult to en-
sure the validity and safety of runtime prevention actions. Indeed,
quite a few of these methods are not safe in that they may introduce
artificial deadlocks. In contrast, our method relies on the type-state
automaton, which formally specifies the correctness criterion, and
therefore ensures that our mitigation actions are always safe. Fi-
nally, whereas replay based methods can only suppress previously
encountered bugs, our method can suppress concurrency bugs that
have not been exposed before.
We have implemented our new method in a software tool based

on the LLVM framework for multithreaded C/C++ applications
written using the POSIX Threads. We have evaluated it on a set of
open-source applications with known bugs. Our experiments show
that the new method is both efficient and effective in suppressing
concurrency related type-state errors.
Our main contributions are summarized as follows:

• We propose a runtime method for suppressing concurrency
related type-state violations in multithreaded applications. It
offers a unified theoretical framework that ensures both the
safety property and the effectiveness property of the runtime
mitigation actions.

• We evaluate our method on a set of multithreaded C/C++ ap-
plications with known bugs. Our experimental results show
that the new method is effective in suppressing these bugs
and at the same time, imposes only an average performance
overhead of 1.45%.

2. MOTIVATING EXAMPLE
We provide an overview of the new runtime analysis and mitiga-

tion method by using the example in Figure 1. Recall that the buggy
program involves at least the two threads in Figure 1, and possibly
also many other threads that run concurrently with them. The in-
tended interleaving of the two threads is a1, a2, a3, . . . , b1, b2, but
the programmer fails to prevent the erroneous interleavings such as
b1, b2, a1, . . ., which can cause the type-state violation.
To analyze all possible interleavings of the two threads, in prin-

ciple, we can represent each thread as a state transition system.
Let M1 be the state transition system of thread T1, and M2 be
the state transition system of thread T2. The combined system
M = M1 × M2 is an interleaved composition of the two indi-
vidual transition systems following the standard notion in the liter-
ature [12]. Figure 3 shows the combined system M , where nodes
are the global program states and edges may be labeled by method
calls from threads T1 or T2.
Each path in M represents an interleaving. For example, from

state (a1, b1), we can execute T1’s o.init() to reach (a2, b1),
or execute thread T2’s o.destroy() to reach (a1, b2). Similarly,
from state (a2, b1), we can execute thread T1’s o.start() to reach
(a3, b1), or execute thread T2’s o.destroy() to reach (a2, b2).
There are four possible interleavings in Figure 3. According to the
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Figure 3: The combined state transition system for the client
programM and the automaton A in Figure 1. Each cross rep-
resents a bad automaton state.

a1:pre_call(&o,’init’);
o.init();

a2:pre_call(&o,’start’);
o.start();

a3:pre_call(&o,’stop’);
o.stop();

a4:...

--- [T1] ---

...

...

...

...

...
b1:pre_call(&o,’destroy’);

o.destroy();
b2:
--- [T2] ---

Figure 4: An instrumented client program with pre_call()

controlling the execution of method calls.

type-state automaton in Figure 1 (right), only the left-most inter-
leaving is free of type-state violation.
Our method injects a control layer between the client and the li-

brary. As illustrated in Figure 4, we instrument the client program
by inserting a pre_call() routine before every method call of
the shared object in the client program. By passing the object ad-
dress and method name as parameters at run time, we know which
method is being called by which thread. Our mitigation strategy is
implemented in pre_call(), to selectively delay certain method
calls. In this example, when o.destroy() is about to execute, and
the other thread has not yet finished executing the methods of the
same object o, we will postpone the execution of o.destroy().
Postponing the execution of the method call can be implemented

by forcing thread T2 to spin until the global state becomes (a4, b1).
We invoke usleep in a spinning while-loop in pre_call(), which
releases the CPU to execute other threads.
To minimize the performance overhead, the runtime mitigation

decisions need to be made by a distributed strategy: each individ-
ual thread decides whether to proceed or postpone the method call
while executing pre_call(). These decisions are based on an-
alyzing the type-state automaton specification, which shows that
executing o.destroy() will lead to a sink state, from which no
other method calls can be executed (see Figure 3). That is, method
o.destroy() should not be allowed to execute while the program
is still in states (a1, b1), (a2, b1), or (a3, b1); otherwise, based
on the control flow information of the program, we know that the
pending requests in thread T1 for executing o.init(), o.start(),
and o.stop() will cause a violation.
To sum up, our strategy in general is to avoid moving the au-

tomaton to a state from which violations become inevitable. The
underlying theory for our framework is model checking, where the
control flow graph serves as a finite state abstraction of the client
program. The inevitably faulty states in the composed system of
the program and the automaton can be characterized by a temporal
logic formula AFΨbad. Here, path qualifier A means on all paths,
temporal operator F means finally, and predicate Ψbad represents
the set of illegal states as defined by the type-state automaton.

When the state transition systemM is finite, formula AFΨbad is
decidable [3, 12]. In this case, our new method can be optimized
with three criteria in mind: safety, effectiveness, and cost. Safety
means that the runtime mitigation actions do not introduce erro-
neous thread interleavings that do not already exist in the original
program. Effectiveness means that all invalid interleavings should
be removed and all valid interleavings should be retained. Cost
means that the mitigation actions added to pre_call() should
have the smallest possible runtime overhead.

3. THE SCOPE AND CHALLENGES
In this section, we define the type of bugs targeted by our method

and outline the main technical challenges.

The Scope. Concurrency bugs can be divided into two groups
based on whether they are caused by (1) the synchronization be-
ing too loose or (2) the synchronization being too tight. When
the synchronization is too loose, there will be unwanted interleav-
ings, causing data-races, atomicity violations, order violations, etc.
When the synchronization is too tight, some interleavings will be
prohibited, causing deadlocks, live-locks, or performance bugs. Our
new method is based on tightening up the synchronization by ana-
lyzing the interaction between the client and the type-state automa-
ton of the library. As such, it is designed to prevent bugs caused by
the thread synchronization being too loose (Type 1). Bugs in the
other group (Type 2) will not be handled by our technique.
It is worth pointing out that not all object behaviors in C++/Java

can be expressed by using type-state automaton [31]. Objects with
blocking methods (such as locking operations) are obvious exam-
ples. Consider mutex_lock, for instance, it is not clear what the
type-state automaton specification should be. The straightforward
solution, where the o.lock() and o.unlock() method calls are
required to be strictly alternating, is incorrect because which thread
executes a method is also crucial to deciding whether a call se-
quence is legal. Unfortunately, the notion of threads is not part of
the classic definition of type-state automaton [31] – this is a well
known theoretical limitation of type-state automaton.
Our paper is not about lifting this theoretical limitation. Instead,

our paper focuses on leveraging the current form of type-state au-
tomaton – which is widely used in object-oriented development
practice – to mitigate bugs caused by incorrect use of synchroniza-
tions external to the methods. Therefore, we assume that all the
concurrency control operations are imposed by the client program,
and all methods of the type-state automaton itself are non-blocking,
e.g., there is no internal locking operation. All locking operations
are performed by the client program outside the methods.

The Technical Challenges. One of the main challenges in run-
time failure mitigation is to make sure that the mitigation actions
are safe. That is, the additional actions should not introduce new
erroneous interleavings, e.g., deadlocks resulting from the thread
synchronization being too loose to the thread synchronization be-
ing too tight. At the same time, they should be able to steer the
program to a failure-free interleaving whenever such interleaving
exists. This is actually difficult to do because, as we have men-
tioned before, most of the existing methods do not guarantee that
they would not introduce new deadlocks. We can avoid introduc-
ing new bugs because of two reasons. First, we have the type-state
automaton, which serves as a clearly defined goal for perturbing
the thread interaction. Second, we propose a rigorous theoreti-
cal framework for analyzing and deriving the runtime mitigation
strategies, based on the theory of model checking.
Our example in Figure 1 may give the impression that runtime

prevention of concurrency related type-state errors is easy. How-
ever, this is not the case. Consider Figure 5, where the automaton
for file_reader as defined in the Boost C++ library says that
read() can execute after open() and read(), but not immedi-



a1:o.open();
a2:o.read();
a3:...

--- [T1] ---

...

...
b1:o.close();
b2:o.read();
b3:...

--- [T2] ---

read
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I

Figure 5: A client program and the type-state automaton. All
valid thread interleavings must start with b1, a2, . . .
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Figure 6: State transitions for the example in Figure 5.

ately after close(). At first glance, it may be tempting to design a
strategy as follows:

• in automaton state I , delay read();
• in automaton state E, delay open();
• in automaton stateD, delay read() and close().

However, this strategy is not sufficient to suppress the violation.
To suppress the violation, starting with the initial state (a1, b1), we
should execute thread T2’s close() while delaying thread T1’s
open(). However, such decision cannot be made based on the
above strategy. Indeed, it is not immediately clear why one should
favor T2’s close() over T1’s open(), since both are allowed to
execute while the automaton is in State I .
This example highlights one challenge in designing the runtime

strategies. Rather than coming up with ad hoc strategies as in exist-
ing methods and then trying to justify why they work, it would be
more appealing to establish a unified theoretical framework within
which the effectiveness and cost of various strategies can be ana-
lyzed. This is what we set out to do in this paper – it is a main
difference between our new method and the existing methods.
Another main challenge is to address the competing requirement

of reducing the runtime overhead. In practice, finding the failure-
free interleaving whenever it exists may require full observability of
the client program’s state, and therefore is prohibitively expensive.
Therefore, we need to design the mitigation strategies under the
assumption that we only have the control flow information of the
client program, which is an over-approximation that we can obtain
through static program analysis.

4. PRELIMINARIES
In this section, we formally define the type-state automaton and

the over-approximate state transition system of the client program.

4.1 Type-State Automaton
A type-state automaton is a specification of the temporal prop-

erties of the API usage rules associated with an object. In object-
oriented programming languages, an object is a container for data

of a certain type, providing a set of methods as the only way to
manipulate the data. Typical API usage rules are as follows: if the
object is in a certain state before calling the method, it will move to
another state after the call returns, and the call will return a certain
value or throw an exception.
A type-state automaton is an edge-labeled state transition graph

A = 〈S, T, s0, Sbad, L〉, where S is a set of states, T ⊆ S × S
is the transition relation, s0 ∈ S is the initial state, Sbad is the
set of illegal states, and L is the labeling function. Each transition
t ∈ T is labeled with a set L(t) of method calls. A valid method
call sequence corresponds to a path in the automaton that starts at
s0 and ends at a state s 6∈ Sbad. For example, when the stack
is empty, executing pop() would force the automaton to a state in
Sbad. States in Sbad are terminal: once the automaton enters such a
state, it will remain there forever. Therefore, a type-state automaton
specifies a set of temporal safety properties.
In the original definition of type-state automaton [31], states do

not have labels. In order to represents objects such as stacks and
queues, which may have a large or even infinite number of states,
we use a generalized version (e.g., [39]) where a state may be la-
beled with a set of Boolean predicates – transition to the state is
allowed only if all these predicates evaluate to true. It is worth
pointing out that, even with this extension, the automaton remains
an abstraction of the object, and there exist other extensions such
as parameterized and dependent type-states (c.f. [5]), which make
the automaton even more expressive. However, we have decided
not to explore these extensions due to performance concerns.

4.2 Concurrent Program
A concurrent program has a set of shared objects SV and a set

of threads T1 . . . Tm. Each thread Ti, where 1 ≤ i ≤ m, is a
sequential program with a set of local objects. Let st be a state-
ment. An execution instance of st is called an event, denoted
e = 〈tid, l, st, l′〉, where tid is the thread index, l and l′ are the
thread program locations before and after executing st. We model
each thread Ti as a state transition system Mi. The transition sys-
tem of the program, denoted M = M1 × M2 × . . . × Mm, is
constructed using the standard interleaved composition [3, 12]. Let
M = 〈Q,E, q0, L〉, whereQ is the set of global states,E is the set
of transitions, q0 is the initial state, and L is the labeling function.
Each state q ∈ Q is a tuple of thread program states. Each tran-
sition e ∈ E is an event from one of the m threads. The labeling
function Lmaps a method call event to the method name, and maps
a non-method call event to the empty name ǫ.

An execution trace ofM is a sequence q0
e1−→ q1

...
−→ qn, where

q0, . . . , qn are the states and e1, . . . , en are the events. A method
call event from thread Ti may have one of the following types:

• o.m() for calling methodm() of shared object o;
• fork(j) for creating child thread Tj , where j 6= i;
• join(j) for joining back thread Tj , where j 6= i.
• lock(lk) for acquiring lock lk;
• unlock(lk) for releasing lock lk;
• signal(cv) for setting signal on condition variable cv;
• wait(cv) for receiving signal on condition variable cv;

Here, o.m() represents a method call of the shared object, while
the remaining ones are thread synchronization operations.
The reason why we model thread synchronization events is that

we need to decide which threads are blocking at any time during
the execution. The information is important to avoid introducing
artificial deadlocks by the online mitigation algorithm. In defin-
ing the above events, we have assumed that the client program
uses thread creation and join, mutex locks, and condition variables
for synchronization operations. Locks and condition variables are
the most widely used primitives in mainstream platforms such as
PThreads, Java, and C#. If other blocking synchronizations are



used, they also need to be modeled as events. By doing this, we
will be able to know, at each moment during the program execu-
tion, which threads are in the blocking mode (disabled) and which
threads are in the execution mode (enabled).

4.3 Abstraction and Limited Observability
In practice, the precise modelM of the client program can be ex-

tremely large or even have infinitely many states. Since our focus
is on enforcing API usage rules, we consider a finite state abstrac-

tion of M , denoted M̂ . In this abstraction, we do not consider
the thread-local events. Furthermore, we collapse a set of concrete
states at each program location to form an abstract state.
More formally, we define a control flow abstraction of the pro-

gram, denoted M̂ = 〈Q̂, Ê, q̂0, L̂〉, where Q̂ is a set of control

locations, Ê is a set of transitions, q̂0 is the initial state, and L̂

is the new labeling function. We make sure that M̂ is an over-

approximation of M in that every path in M is also a path in M̂ ,

although M̂ may have spurious paths that do not exist inM .
For example, if each individual thread is modeled by its control

flow graph, M̂ would be the interleaved composition of all these
control flow graphs. In this case, the abstract state is a global con-
trol state, denoted q̂ = 〈l1, . . . , lm〉, where each li is a location
in thread Ti. An abstract state in this model would encompass all
the concrete program states that share the same set of thread loca-
tions. Abstractions such as this, together with the labeling function

L̂, provide only limited observability of the client program but they
allow the runtime analysis and mitigation problem to be decidable.

5. RUNTIME FAILURE PREVENTION
In this section, we focus on developing a theoretical framework

for analyzing the runtime failure mitigation problem. However,
methods presented here are not meant to be directly implemented
in practice. Instead, they represent what we would like to achieve
in the ideal case. In the next section, we shall develop a practically
efficient implementation scheme, by carefully over-approximating
the ideal methods presented in this section.
Here, we assume that both the automaton A and the client pro-

gram M are available, and we show that our method guarantees to
satisfy both the safety and the effectiveness criteria. We leave the

optimization of runtime cost – which assumes the availability of M̂
instead ofM – to the subsequent sections.

5.1 The Theory
Recall that our prevention method is based on imposing addi-

tional constraints on the order of method calls in the client pro-
gram, to suppress erroneous interleavings. Furthermore, the run-
time control is implemented as a distributed strategy where each
thread, upon receiving the method call request, decides whether
to postpone its execution. Although delaying method invocations
may seem to be an approach that hurts performance, it is actually
unavoidable because the delay is dictated by the desired client pro-
gram behavior as specified by the type-state automaton specifica-
tion. In other words, the delay is a necessary part of the correct
program behaviors. Therefore, it is only a matter of enforcing the
delay through which synchronization mechanism.
The theoretical foundation for our runtime analysis and mitiga-

tion is a state space exploration of the composed system (M ×A):
That is, our runtime actions depend on analyzing the type-state au-
tomaton A and its interaction with the client program M . At the
high level, our strategy is as follows: at each step of the program
execution, we check whether executing a certain method call m
will inevitably lead to a type-state violation. If the answer to this
question is yes, we delay the execution of that method.

More formally, let the transition system G = M × A be the
synchronous composition of the client program M and the type-
state automaton A using the standard notion in state space explo-
ration [3, 12]. Each node in G is a pair of states inM and A of the

form (q, s), where q ∈ Q and s ∈ S. Each edge (q, s)
e

−→ (q′, s′)

corresponds to the simultaneous execution of transition q
e

−→ q′ in

M and transition s
e

−→ s′ in A. The initial state is (q0, s0), where
q0 is the initial program state and s0 is the initial automaton state.
The set of bad states is defined as {(q, s) | s ∈ Sbad}.
In the transition system G = M × A, we decide at any state

(q, s), whether transition (q, s)
m
−→ (q′, s′) should be executed

by checking whether (q′, s′) satisfies the temporal logic property
AF Ψbad. Here, path quantifier A means on all paths, temporal
operator F means finally, and predicate Ψbad means a bad state in
Sbad has been reached.

m( )

(q, s)

(q′, s′) |= AF Ψbad

(a) theoretical method

n

m( )
n( )

(s′ 6|= EF n

(−, s)

n n n

(b) practical method

Figure 7: Illustrating the correctness proof of our runtime
analysis and error mitigation strategy.

Specifically, if state (q′, s′) satisfiesAFΨbad, denoted (q
′, s′) |=

AF Ψbad, then from automaton state s′, the type-state violation be-
comes inevitable. This is illustrated in Figure 7 (a) – we say that

transition (q, s)
m
−→ (q′, s′) will lead to a type-state violation. No-

tice that a special case is when state s′ itself is a bad state. The
more general case is when all paths originated from s′ lead to a bad
state. Since our goal is to avoid such concurrency related type-state
violations, whenever executing method m in state (q, s) leads to a
state (q′, s′) |= AF Ψbad, we postpone the execution of methodm,
thereby avoiding the subsequent state (q′, s′).
The pseudocode is shown in Algorithm 1. Recall that we have

inserted an pre_call(m) before every call to method m of the
shared object under inspection. Inside this procedure, we first check
if the current thread T is the only enabled thread. If the answer is
yes, there is no scheduling nondeterminism at this time, and we
have no choice but to execute m (if executing m inevitably causes
a violation, the violation is already unavoidable). If T is not the
only enabled thread, we call must_delay(m) to check whether
executingm leads to a state (q′, s′) |= AF Ψbad. If this is the case,
must_delay(m) returns true; otherwise, it returns false.
Whenever must_delay(m) remains true, thread T1 waits inside

the while-loop until must_delay(m) eventually returns false. In-
side the while-loop, we call usleep() to release the CPU tem-
porarily so that it can execute other threads. Meanwhile, another
thread may execute pre_call(n) and change the state from (q, s)
to (q′′, s′′). This can make must_delay(m) returns true, thereby
allowing thread T to break out of the loop. At this time, thread T

will advance the global state based on (q′′, s′′)
m
−→ (q′′′, s′′′) and

then return. After that, method callm will be executed.
The spinning of pre_call() at Lines 4-5 is implemented by

calling usleep(), which releases the CPU temporarily to execute
other threads. We set an increasingly longer delay time in usleep
by using the popular exponential back-off strategy [11]. During our
experiments, the delay time starts from MIN=1ms to MAX=1s.



Algorithm 1 (Theoretical) Deciding whether to delay methodm.

1: pre_call ( object o, methodm ) {
2: Let T be this thread;
3: while (T is not the only enabled thread) {
4: while ( must_delay( o,m ) ) {
5: usleep( usec );
6: }
7: }
8: update_state( o,m );
9: }
10: must_delay( object o, methodm ) {
11: Let (q, s) be the current state ofM × Ao;

12: Let (q′, s′) be the state after executingm in state (q, s);

13: if ( (q′, s′) |= AF Ψbad ) return true;

14: return false;
15: }

EXAMPLE 1. Consider the client program in Figure 1 and the
state transition graph in Figure 3. When the program is at state
(a1, b1), we have to delay T2’s request to execute o.destroy().
The reason is that, executing o.destroy() would move the pro-
gram from (a1, b1) to (a1, b2). However, (a1, b2) |= AFΨbad

meaning that the type-state violation becomes inevitable starting
from (a1, b2). In contrast, we allow thread T1 to execute o.init()
because it would move the program to state (a2, b1), which does
not satisfy AFΨbad due to the existence of the left-most path in
Figure 3.

EXAMPLE 2. Consider the client program in Figure 5 and the
state transition graph in Figure 6. When the program is in state
(a1, b1), we have to delay thread T1’s request to execute o.open(),
because the next state (a2, b1) |= AFΨbad, that is, all paths from
(a2, b1) eventually lead to a type-state error. In contrast, we allow
thread T2 to execute o.close(), because the next state (a1, b2)
does not satisfy AFΨbad due to the existence of paths that end at
state (a3, b3) in Figure 6.

To determine whether a running thread is enabled, which is re-
quired by Line 3 of Algorithm 1, we monitor the thread synchro-
nization events in addition to the method calls of the shared object.

• An currently enabled thread T becomes disabled when it ex-
ecutes method m such that (i) m is lock(lk) but lock lk
is held by another thread, (ii) m is wait(cv) but condition
variable cv has not been set by a remote thread, or (iii)m is
a thread join(j) but child thread Tj has not terminated.

• Similarly, a disabled thread T becomes enabled when an-
other thread executes method n such that (i) n is unlock(lk)
that releases the lock, (ii) n is either signal(cv) or broadcast(cv)
that sets the condition variable cv waited by thread T , or (iii)
n is the termination event of child thread waited by thread T .

5.2 Proof of Correctness
Now, we prove that our method satisfies both the safety property

and the effectiveness property defined as follows.

THEOREM 1 (SAFETY). The runtime mitigation method in Al-
gorithm 1 never introduces new concurrency bugs that do not exist
in the original client program.

In other words, we guarantee that the runtime actions will do no
harm. We provide the proof sketch as follows: In this algorithm,
the only impact that these actions have on the client program is the
delay of some method calls. The result of such delay is that certain
thread interleavings, which are allowed by the original program,
are no longer allowed. However, adding delay to the client pro-
gram will not introduce new interleavings to the program. Since all
the possible thread interleavings of the new program are also valid

interleavings of the original program, our method does not intro-
duce any new program behavior (no new concurrency bug). At the
same time, our new method will not introduce artificial deadlocks,
because of the implicit check for artificial deadlocks in Line 3 of
our Algorithm 1: If thread T is the only enabled thread at that time,
it will not be delayed by our method. �

THEOREM 2 (EFFECTIVENESS). When the precise state tran-
sition system M of the client program is available and M has a
finite number of states, the method in Algorithm 1 can guarantee
to steer the program to a failure-free interleaving, as long as such
interleaving exists.

We provide the proof sketch as follows: Under the assumption that
M is precise and is finite in size, the evaluation of (q′, s′) |=
AF Ψbad is decidable [3, 12]. This will directly establish the ef-
fectiveness of our method. At each node in the composed graph
M × A, we can avoid executing method m if it leads to state
(q′, s′) |= AF Ψbad. This is illustrated pictorially by Figure 7 (a).
As long as the initial state (q0, s0) 6|= AF Ψbad, meaning that there
exists a failure-free interleaving, our method will ensure AF Ψbad

is false in all subsequent states of the chosen execution trace. �
Our proof for Theorem 2 contains an important message. When

the client M has infinitely many states, it is impossible to guaran-
tee the effectiveness property. The reason is that checking tempo-
ral logic formulas such as AF Ψbad in an infinite-state system is
undecidable. Even if M is a finite-state system, constructing and
analyzing this potentially large graphM can become prohibitively
expensive. Therefore, we substitute M by a finite-state abstraction
as defined in Section 4, where we use the control flow graph of each
thread to over-approximate its state transition system. In this case,
the safety property can still be guaranteed.

Let Ĝ = M̂ × A. Instead of evaluating (q̂′, s′) |= AF Ψbad

in G, we now choose to evaluate (q̂′, s′) |= AF Ψbad in Ĝ. Since

Ĝ is an over-approximation of G, it contains all valid paths of G,
and possibly some bogus paths. Therefore, by the definition of AF,
which means on all paths eventually, we have

(q̂′, s′) |= AF Ψbad implies (q′, s′) |= AF Ψbad ,

meaning that if all paths from (q̂′, s′) in Ĝ end at a bad state, then
all paths from (q′, s′) inG end at a bad state. But the reverse is not

true since some added paths in Ĝ may end at a good state.
Based on the above analysis, we conclude that, by using abstract

model M̂ to replace M , and using (q̂′, s′) |= AF Ψbad to replace
the condition in Line 13 of Algorithm 1, we will still be able to
retain the safety guarantee. However, depending on the accuracy of

M̂ , we may not always be able to satisfy the effectiveness guaran-
tee, because it can only provide us with limited observability of the
program. The important message is that, the loss of effectiveness
guarantee is theoretically unavoidable.

6. THE PRACTICAL ALGORITHM
In this section, we present a practically efficient instantiation of

the method introduced in the previous section. It is defined by a
set of easily checkable sufficient conditions whose validity implies
(q′, s′) |= AF Ψbad. They allow us to avoid checking the precise

client modelM , or even the finite-state abstraction M̂ . In fact, this
new algorithm relies mainly on the type-state automaton A, while
requiring little information about the client program.

6.1 Rules Based on the Automaton Only
First, we present a sufficient condition for (q′, s′) |= AF Ψbad

that can be evaluated by analyzing the automaton A only. The con-
dition is meant to replace the check in Line 13 of Algorithm 1.



Similar to the previous section, let s be the current state of the
automaton A, m be the object method to be executed in thread T ,
and s′ be the next state of the automaton A if we executem in state
s. Instead of checking (q′, s′) |= AFΨbad, we check if at least one
of the following conditions holds:

• Rule 1: If s′ ∈ Sbad, meaning that a violation will happen
in s′, we must postpone the execution of methodm.

• Rule 2: If there exists a future request to execute method n
in state s′ by another thread T ′, but in the automatonA, there
does not exist any edge labeled with n that is reachable from
state s′, we must postpone the execution of methodm.

These conditions are easily checkable because they depend only on
the current state of M and future method calls of the automaton
A. None of them requires the state transition information of M or

M̂ . Indeed, Rule 1 involves the current and next automaton states
s and s′ only. Rule 2 involves, in addition to s and s′, also the
future method calls (n) of other threads, and the reachability of
edges labeled with n in automaton A. Therefore, Rules 1 and 2 are
sufficient conditions for (q′, s′) |= AF Ψbad:

• In Rule 1, if s′ is a bad state, AF Ψbad is already satisfied.
• In Rule 2, when both n andm are enabled at state (−, s) and
we choose to executem, as illustrated in Figure 7 (b), nmust
appear in all execution paths starting with (−, s′). However,
in the automaton A, if edges labeled with n are not reachable
from state s′, then all paths of the composed system starting
with (−, s′) are illegal. This means (−, s′) |= AF Ψbad.

The pseudo code of our new method is shown in Algorithm 2. In
contrast to the original algorithm, We replace update_state()

with update_automaton-state(), since states of the client pro-
gram M are no longer used. By default, must_delay() returns
false, meaning that call to this method will not be delayed. Line 13
implements Rule 1. Lines 15-18 implement Rule 2. If any of the
two sufficient conditions holds, the procedure returns true, mean-
ing that call to this method must be delayed, until other threads
execute some method that can change the current automaton state
s, and make must_delay() return false.

Algorithm 2 (Practical) Deciding whether to delay methodm.

1: pre_call ( object o, methodm ) {
2: Let T be this thread;
3: while (T is not the only enabled thread) {
4: while ( must_delay( o,m ) ) {
5: usleep( usec );
6: }
7: }
8: update_automaton-state( o,m );
9: }
10: must_delay( object o, methodm ) {
11: Let s′ be the automaton state after executingm in state s;
12: // Rule 1.
13: if ( s′ ∈ Sbad ) return true;
14: // Rule 2.
15: for each ( method n in another thread T ′ ) {
16: if ( n is not reachable from s′ in automatonA )
17: return true;
18: }
19: // Rule 3.
20: for each ( pattern collected from the client program ) {
21: if ( pattern is not reachable from s′ in automatonA )
22: return true;
23: }
24: return false;
25: }

It is worth pointing out that Rules 1 and 2 are sufficient, but not
necessary, conditions. They can guarantee the safety property but
may not be strong enough to guarantee the effectiveness property.
However, it does not mean that the effectiveness property cannot be

achieved in most of the practical settings. Indeed, we have found
that these two rules are already powerful enough to prevent most
of the concurrency related type-state violations encountered in our
benchmarks. We will present our experimental results in Section 8.

6.2 Rules Based on Limited Observability of
the Client Program

When additional information about the client program is avail-
able, we can leverage the information to improve the effectiveness
of the algorithm. For example, the concurrency error in Fig 5 can-
not be avoided by applying Rules 1 and 2 only, or any rule that
is based exclusively on the automaton. This is because both T1’s
open() and T2’s close() can pass the checks of Rules 1 and 2.
Therefore, must_delay(m)will return false in both threads. How-
ever, the failure-free interleaving requires that we postpone open()
in thread T1, while allowing the execution of close() in thread T2.
If we can somehow look ahead a few steps in the execution of

each thread, e.g., by leveraging the control flow information that
we obtain through static program analysis, as shown in Figure 2.
Our runtime mitigation algorithm will be able to perform better.
We now present an extension to incorporate such static information
into our runtime analysis. The result is an additional rule, which
can successfully handle the example in Figure 5.
The new rule is based on identifying call sequences that may

appear in the client program, denoted pattern(m,n, . . .).

• Rule 3. If there exists a pending method call sequence char-
acterized by pattern(m,n, . . .) in the client program, but in
automaton A, there exists no valid path that starts with state
s′ and leads to a sequence that matches pattern(m,n, . . .),
we must postpone the execution of methodm.

EXAMPLE 3. Consider the client program in Figure 5. By ana-
lyzing the client program code, we know that the close() method
call is always followed by a call to read() from the same thread.
Therefore, any interleaving must have close(),...,read(). Fur-
thermore, we know that a1 has the only call to open(). If we were
to execute a1 first, after that, there will be no call to enable and the
pattern becomes close[!open]∗read. However, this pattern is
not reachable from the current automaton state. Based on Rule 3,
therefore, must_delay() will have to return true for T1’s request
to execute open(), but return false for T2’s request to close().

We use Rule 3 in Algorithm 2 in the same way as we use Rule 2,
except that the patterns must to be collected a priori from the client
program, before they are checked against the automaton A at run
time. These patterns are collected from the client program through
a conservative static analysis of the control flow graphs of the indi-
vidual threads, which will be explained in Section 7.

7. STATIC CONTROL FLOW ANALYSIS
The static analysis as required in Figure 2 has to be conservative

in that it must over-approximate the control flow of the program.
However, it does not need to be precise for our runtime mitigation
to be effective. To avoid the well-known interleaving explosion
problem, we carry out this static analysis on each individual thread
in a thread-local fashion.

7.1 Collecting Future Events of a Given Event
Our static analysis computes the following information:

• For each method callm in a thread, compute the set of meth-
ods {n} such that n is the next method that may be exe-
cuted immediately after m by the same thread. We repre-
sent m and {n} as a key-value pair in a table (method →

nextMethods).



• For each method callm in a thread, compute the set of meth-
ods {n′} such that n′ is a future method that may be ex-
ecuted some time after m by the same thread. We repre-
sent m and {n′} as a key-value pair in a table (method →

futureMethods).

These tables are computed statically a priori and then made avail-
able at runtime. Our runtime mitigation algorithm will leverage
them for evaluating Rule 3 in Algorithm 2, thereby improving the
effectiveness of our method in suppressing concurrency errors.
There can be many different ways of implementing such static

program analysis, as long as the analysis result is conservative.
That is, if event m may appear before event n′ in some actual exe-
cution of the program, then n′ must be included in the future (next)
event table of m. A nice feature of our method is that the next and
future event tables do not need to be precise for the runtime miti-
gation to be effective. Indeed, even without the next/future event
tables, our runtime mitigation method still works correctly: it is
able to ensure safety and remains effective in most cases (e.g., as in
Rule 1). However, the next/future event tables, whenever they are
available, can help cut down the delay introduced by Rule 2 and
can be used to implement Rule 3.

7.2 Improving the Runtime Performance
Now, we show that the statically computed next/future event ta-

bles may also be used to reduce the runtime overhead of applying
Rule 2. To understand why this is the case, consider the following
example. While evaluating Rule 2 for method m in thread T2, we
need to know the next method calls of all other concurrent threads,
including method n in thread T1 in the example below. However,
without the pre-computed event tables, some of the information
would not have been available.

--------[T1]-------- --------[T2]--------
pre_call(n1)
n1();
... must_delay(m)
pre_call(n2)
n2();

-------------------- --------------------

In this example, the call to method m in thread T2 is executed be-
tween methods n1 and n2. When must_delay(m) is executed,
thread T1 may still be executing the code before pre_call(n2).
Since it has not yet entered pre_call(n2), it has not updated
the data shared with thread T2. Therefore, while T2 evaluates
must_delay(m), it will not be able to know what the next method
call in thread T1 is. This poses a problem for checking Rule 2.
If the event tables as described in Section 7.1 are not available,

we have two choices:

• We may allow must_delay(m) to consider only the arrived
method calls from other threads. If a thread is still in-flight,
such as T1 in the above example, we simply skip it while ex-
ecuting Lines 6-10 in Algorithm 2. This approach is good for
performance, but may reduce the effectiveness in suppress-
ing bugs. For example, in Figure 1, we may not be able to
delay T2’s call to destroy() if T1 is in-flight.

• We may require must_delay(m) to wait for all threads to
arrive and report the method calls before making a decision
on whether to delay the methodm. This approach will retain
the effectiveness of our method in suppressing bugs, but may
hurt performance.

None of the two choices is desirable.
With the help of the pre-computed next/future event tables, we

will be able to overcome this dilemma. For each method m exe-
cuted by thread Ti, return the immediate next method n that may
be called by the same thread, we can leverage the successor event

information to help remove the limitations associated with in-flight
threads and pending method calls. We no longer need to compro-
mise on the effectiveness by ignoring the next method calls from
in-flight threads, or compromise on the performance.

8. EXPERIMENTS
We have implemented the proposed method in a tool based on

the LLVM compiler framework to handle arbitrary C/C++ appli-
cations based on the PThreads. We use LLVM to conduct static
program analysis and then inject runtime analysis and control code
to the client program, so that the relevant method calls of shared
objects are monitored at run time. More specifically, we insert the
pre_call() routine before every thread synchronization routine
and every blocking system call to determine which threads are en-
abled during the execution. We also insert the pre_call() rou-
tine before every call to methods of the shared objects in order to
control their execution order. The type-state automaton, which pro-
vides the object type and monitored methods, are manually edited
into configuration files, which in turn serve as the input of our tool.
During our experiments, we consider three research questions:

• How well can it suppress concurrency related type-state vio-
lations in real-world applications?

• How well can it control the performance overhead of the run-
time mitigation actions?

• How well does it scale on applications with large code base
and many concurrent threads?

Evaluation Methodology. We have conducted experiments on a
set of open-source C/C++ applications on the Linux platform to
evaluate our new method. The characteristics of all benchmark ex-
amples are summarized in Table 1.
The first two benchmark examples are full-sized open-source ap-

plications with known bugs and the corresponding test cases to
reproduce them. Memcached-1.4.4 is a high-performance, dis-
tributed memory object caching system. The bug happens when
two clients concurrently increment or decrement certain cached
data: the in-place increment/decrement is not atomic, causing some
updates to be lost [43]. Transmission-1.42 is a multi-thread Bit-
Torrent download client. The bug happens when reading a shared
variable should occur after initialization, but may occur before the
initialization due to the lack of synchronization, causing an asser-
tion failure.
The next nine benchmark examples are unit-level test programs

for the popular Boost C++ libraries, which are portable source li-
braries used by many commercial and open-source applications.
We have carefully studied the APIs of some of the most popular
packages such as timer and basic_file and created the corre-
sponding type-state automata.
In all cases, the automaton is specified by the user. The automa-

ton size is small (less than 10 states). In addition, for each bench-
mark example, the user provides a buggy test program and a bug-
free test program. Together, they serve as input of our tool during
the experimental evaluation.

Effectiveness. We have evaluated the effectiveness of our method
in suppressing type-state violations. Table 2 shows the results.
Columns 1-2 show the statistics of the benchmarks, including the
name and the number of threads encountered during the test run.
Columns 3-4 show the results of running the original program,
where we show whether the violation has occurred and the run time
(before the program crashes). Columns 5-6 show the results of run-
ning the same program but with runtime prevention. Again, we
show whether the bug has occurred and the run time. These experi-
ments were conducted on a workstation with 2.7 GHz Intel Core i7
(with four logical processors) and 8GB memory.



Table 1: The evaluated applications and the descriptions of the type-state violations.
Appl. Name LoC Class Name Bug Description

Transmission-1.42 90k t->peerMgr Reading of h->bandwidth should occur after initialization, but may be executed before
initialization due to lack of synchronization, causing an assertion failure.

Memcached-1.4.4, bug id:127 62k key The bug happens when two clients concurrently increment or decrement certain cached
data. The in-place incr/decr is not atomic, causing some updates being lost.

Boost-1.54.0:file reader 48k basic_file If one thread called close earlier, another thread that tries to call read would not be able
to read the correct content from the target file.

Boost-1.54.0:file writer 48k basic_file If one thread called close earlier, another thread that tries to call write would not be able
to write the content correctly to the target file.

Boost-1.54.0:timer 27k cpu_timer Supposedly a timer should be resumed when it’s stopped earlier, if one thread called
resume before another thread calls stop, the timer would still be stopped thus not func-
tioning.

Boost-1.54.0:object_pool 54k pool If one thread called the de-constructor ∼pool earlier, another thread that tries to call
release_memory would no be able to get the correct return value.

Boost-1.54.0:move 45k file_descriptor After one thread called boost::move, the new pointer gets the value of the old pointer
and the old pointer becomes invalid, another thread that tries to call empty of the old
pointer would not be able to get the correct return value.

Boost-1.54.0:unorderd_map 53k unorderd_map If one thread called the de-constructor ∼unordered_map earlier, another thread that
tries to call operator[ ] would not be able to get the correct return value.

Boost-1.54.0:unorderd_set 53k unorderd_set If one thread called the de-constructor ∼unordered_set earlier, another thread that tries
to call size would not be able to get the correct return value.

Boost-1.54.0:any 27k any If one thread called the de-constructor ∼any earlier, another thread that tries to call the
function type would cause the program to crash.

Boost-1.54.0:priority_queue 54k fibonacci_heap If one thread tries to call pop when the priority_queue is empty, it would cause the
program to crash.

In all test cases, our method was effective in suppressing these
concurrency related type-state violations. We have also run the
fixed program multiple times, to see if the fixes are accidental or
consistent. Our results show that the fixes are consistent across dif-
ferent runs: after applying our new method, the known concurrency
errors never show up again.

Table 2: The effectiveness for runtime failure mitigation.
Test Program Original Prevention

name threads error time error time

Transmission 2 crash ( 5.5 s) fixed 12.6 s

Memcached-127 4 crash (10.1 s) fixed 20.1 s

Boost:file_read 2 fail (15.1 s) fixed 15.5 s

Boost:file_write 2 fail (11.4 s) fixed 12.7 s

Boost:timer 2 fail (9.0 s) fixed 9.3 s

Boost:object_pool 2 fail (15.2 s) fixed 15.6 s

Boost:move 2 fail (10.0 s) fixed 10.4 s

Boost:unorderd_map 2 fail (10.2 s) fixed 10.8 s

Boost:unorderd_set 2 fail (11.4 s) fixed 12.6 s

Boost:any 2 crash (<0.1 s) fixed 8.6 s

Boost:priority_queue 2 crash (<0.1 s) fixed 9.4 s

Performance. We have evaluated the performance overhead of our
method using the same set of applications but with a different set
of test programs (non-buggy ones). The reason for using a dif-
ferent set of test programs is that, the set of test programs used
in Table 2 are not suitable for comparing performance. Without
mitigation, the test programs might crash in the middle of the ex-
ecution. For the open-source applications, each buggy test case
also has a failure-free test case. For the Boost examples, we also
have failure-free versions of all the test programs. For these test
cases, both the original program and the program with prevention
can complete. The additional computation required by our runtime
prevention algorithm adds nothing but pure runtime overhead.
Figure 8 shows the results. The x-axis are the the benchmarks.

The y-axis are the runtime overhead in percentage. The results
show that our prevention method has only a small performance
overhead. Except for THRIFT, all the other benchmarks have a run-
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Figure 8: The overhead of runtime failure mitigation.

time overhead of less than 5%. The reason why THRIFT has a larger
runtime overhead is because the method calls of the shared object
are inside a computation-intensive loop, whereas in all the other ex-
amples, the shared objects (such as timer and file_reader) are
not insider computation-intensive loops. On average, our results
show a runtime performance overhead of 1.45%.

Scalability. There are two aspects as far as scalability is concerned.
First, our method can scale up to applications with large code bases,
as shown by the LoC (Lines of Code) numbers in Table 1. Sec-
ond, our method scales well when we increase the number of con-
current threads. In particular, we have evaluated the scalability of
our method by gradually increasing the number threads and check-
ing for the runtime overhead. Figure 9 shows our results on the
Boost:file_write example, where the x-axis shows the number
of concurrently running threads, and the y-axis shows the runtime
overhead in percentage. Notice that the x-axis is in the logarith-
mic scale, whereas the y-axis is in the linear scale. Therefore, the
runtime overhead of our method increases only slightly when more
threads are added to the system.
Compared to the existing methods for runtime mitigation of con-

currency failures, our newmethod has remarkably low performance
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Figure 9: Runtime overhead on Boost:file_write: while the
x-axis is in logarithmic scale, the y-axis is in linear scale.

overhead (on average 1.45%). To put it into context, in the AVIO-
S [19] tool, their purely software based solution imposes an aver-
age slowdown of 25X. Although their AVIO-H has an overhead of
0.4-0.5%, it requires the support of a specialized microprocessor
hardware. Our method does not have such restriction.
The main reason why we can maintain very low runtime over-

head is because we have attacked the problem at the proper ab-
straction level, i.e., by focusing on the method calls, rather than
individual load/store instructions on global memory. In addition,
we have made the following optimizations in our implementation.
Our LLVM-based code instrumentation, which adds monitoring
and control routines for method calls, uses a white-list to filter out
the APIs that are not defined as transitions in the type-state automa-
ton. For example, if we target the prevention of socket related
type-state violations, we will only add monitoring and control rou-
tines for calls defined as transitions in the automaton of socket,
while ignoring other method calls. Because of this, the runtime
overhead of our method is significantly smaller than existing meth-
ods for runtime prevention of low-level concurrency bugs.

9. RELATED WORK
Type-state automaton was first introduced by Strom and Yem-

ini [31]. Since then, many static (e.g., [4, 5, 9]) and dynamic
(e.g., [1, 2]) methods have been proposed for detecting standard
type-state errors. However, they do not focus on concurrency re-
lated type-state violations that are specific only to concurrent ap-
plications. To the best of our knowledge, the only existing meth-
ods for runtime detection of concurrency related type-state viola-
tions are PRETEX [14] and 2ndStrike [10]. PRETEX can detect
not only type-state violations exposed by the current execution, but
also violations in some alternative interleaving of the events of that
execution. However, PRETEX may have false positives. 2ndStrike
improves over PRETEX by using guided re-execution to filter out
the bogus violations. However, these two methods only detect con-
currency related type-state violations, but do not prevention them.
There exists a large body of work on mitigating low-level concur-

rency bugs, such as data-races and atomicity violations over shared
memory reads and writes. For example, Yu and Narayansamy [43]
compute certain event ordering constraints from good profiling runs
and use them in production runs to restrict the thread interleaving.
Their method can help avoid the previously untested (and poten-
tially buggy) interleavings. Similar methods have also been pro-
posed for automated healing of previously encountered atomicity
violations [20, 17, 40, 13] and data-races [26, 29]. Wu et al. [41]
use a set of user-specified order constraints to hot-patch a running
concurrent application, by selectively inserting lock statements to
the code. Dimmunix [15] and Gadara [36, 37] are tools for avoiding
previously encountered deadlocks. Recent work by Liu et al. [18,

38] has extended the idea to avoid atomicity violations. Although
these methods have exploited the idea of restricting thread inter-
leavings to prevent concurrency bugs, they do not focus on type-
state violations. Our method, in contrast, relies on the automaton
specification as correctness criterion.
Another closely related method is EnforceMop [21], which can

mitigate the violation of temporal logic properties and properties
such asmutual exclusivity in Java programs, by blocking the threads
whose immediate next action violates these properties. However,
EnforceMop may introduce artificial deadlocks (which have to be
reported to the developers for manual debugging), and does not
guarantee to find the correct interleaving even if such an interleav-
ing exists. For the example in Figure 1, EnforceMop would have
allowed destroy() to execute right after init(), without fore-
seeing the violation caused by future events start() and stop()
in the first thread. The reason is that EnforceMop only control the
immediate next actions of the threads, whereas our method can look
at future events many steps ahead by analyzing the interaction of
the control flow of the program and the automaton.
Concurrency bug detectors [23, 24, 35, 30, 33, 44, 34] focus on

exposing the failures. In contrast, this work focuses on preventing
concurrency failures by perturbing the thread interleaving – failures
would not occur at run time even if the program is buggy.
Our method is also related to the line of theoretical work on pro-

gram synthesis [8, 22, 25, 32] and controller synthesis [27, 28].
In this context, Vechev et al. [32] infer high-level synchroniza-
tions [16] from safety specifications. Deshmukh et al. [7] require
pre- and post-conditions. Deng et al. [6] and Yavuz-Kahveci et
al. [42] semi-automatically map high-level models into low-level
implementations. However, these methods are all offline methods
for generating or patching the program code; This is a completely
different problem online failure mitigation. For example, it may be
acceptable to spend minutes or even hours to search for a superior
program code modification, if it leads to a valid solution. However,
in runtime failure mitigation, the computational overhead needs to
be many orders of magnitude smaller, e.g., in micro seconds.
Our new method is orthogonal to the existing failure recovery

methods based on checkpoint-and-rollback. Checkpointing is ex-
pensive in general, and speculative execution has its own limita-
tions, e.g., in handling I/O. But more importantly, these methods
focus on the recovery after the failure occurs, whereas our method
focuses on avoiding the failure in the first place. Therefore, it is
reasonable to assume that the two types of methods can co-exist
in the same system. If the failure can be prevented, then there is
no need for rollback recovery. If the failure becomes unavoidable,
then rollback recovery can be used as the last resort.

10. CONCLUSION
We have presented the first runtime method for suppressing con-

currency related type-state violations in real-world multithreaded
C/C++ applications. Our main contribution is the new theoretical
framework within which the correctness and performance of vari-
ous mitigation strategies can be analyzed. This theoretical frame-
work is important in that it can help ensure that our mitigation ac-
tions are always safe. It also tells us when our method can guaran-
tee to steer the program to a failure-free interleaving. We have pre-
sented a practical algorithm, which retains the safety guarantee of
the theoretical framework while optimizing for performance. Our
experimental results show that the new method is both efficient and
effective in suppressing concurrency related type-state violations in
C/C++ applications.
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