RClassify: Classifying Race Conditions in Web
Applications via Deterministic Replay

Lu Zhang
Virginia Tech
Blacksburg, VA, USA

Abstract—Race conditions are common in web applications
but are difficult to diagnose and repair. Although there exist
tools for detecting races in web applications, they all report a
large number of false positives. That is, the races they report are
either bogus, meaning they can never occur in practice, or benign,
meaning they do not lead to erroneous behaviors. Since manually
diagnosing them is tedious and error prone, reporting these
race warnings to developers would be counter-productive. We
propose a platform-agnostic, deterministic replay-based method
for identifying not only the real but also the truly harmful race
conditions. It relies on executing each pair of racing events in two
different orders and assessing their impact on the program state:
we say a race is harmful only if (1) both of the two executions are
feasible and (2) they lead to different program states. We have
evaluated our evidence-based classification method on a large set
of real websites from Fortune-500 companies and demonstrated
that it significantly outperforms all state-of-the-art techniques.

I. INTRODUCTION

Modern web applications are complex due to their need
to implement many features on the client side through asyn-
chronous programming and the use of JavaScript code while
maintaining quick response to users. Although web browsers
typically guarantee that each JavaScript code block is executed
atomically, meaning there is no data-race in the traditional
sense, high-level race conditions can still occur due to de-
ferred HTML parsing, interleaved execution of event handlers,
timers, Ajax requests, and their callbacks.

Existing race detection tools for web applications [33],
[21], [22], [7], [18], [9] often report many false positives.
That is, warnings reported by these tools may be bogus, or
real but harmless. For example, EVENTRACER [22] reported
hundreds of warnings from the official websites of Fortune-
500 companies; although some of these race conditions are
indeed harmful, the vast majority are not, which means di-
rectly reporting them to developers would have been counter-
productive. None of the existing tools, including R4 [9], can
accurately assess the impact of racing events and robustly
identify the real and truly harmful race conditions.

We propose RCLASSIFY, the first evidence-based method
for classifying race-condition warnings in web applications.
Toward this end, we develop a platform-agnostic deterministic
replay framework for client-side JavaScript programs, and
leverage it to assess the actual impact of race conditions.
Given a race-condition warning denoted (ev,, ev,), where ev,
and evy, are the racing events, we first execute the application
while forcing ev, to occur before evy, and then execute the
application while forcing ewv, to occur before ev,. We say
that (ev,, evy) is a harmful race only if (1) both executions
are feasible and (2) the resulting program states, ps; and

Chao Wang
University of Southern California
Los Angeles, CA, USA

URL of Web ~ Race-condition

Harmful or

Application Warnings I Compare the I Harmless
Program States @ 9

Static Analysis

of HTML files

Execution 1 Execution 2

Instrumented

Web Application

Replay the Racing
Event Pair

Fig. 1. RCLASSIFY: Our evidence-based race-condition classification method.

pso, differ in some important fields of the HTML DOM,
JavaScript variables, and environment variables of the browser.
The intuition is that, when the order of ev, and evy, is not fully
controlled by the program logic, and yet affects the program
behavior, it deserves a closer look by developers.

The overall flow of RCLASSIFY is shown in Fig. 1, whose
input is the URL of the web application and a set of race-
condition warnings, and whose output is the set of harmful
races. First, it statically analyzes the HTML files and then
uses source-code transformation to add self-monitoring and
control capabilities. Then, it analyzes the race-condition warn-
ings (reported by the race detection tool) and generates the
configuration files needed for deterministic replay. Next, for
each pair (ev,, ev) of racing events, it executes the application
twice—once with ev, preceding ev, and the other time with
evp preceding ev,. Finally, it compares the two resulting
program states psi and pso.

There are two technical challenges. The first challenge
is developing a robust method to deterministically replay a
JavaScript-based client-side web application. This is difficult
due to the myriad possible sources of nondeterminism. For
example, the race condition may occur during the deferred
parsing of HTML elements, the interleaved execution of
JavaScript, the dispatch of multiple event handlers, the firing of
timer events, the execution of asynchronous HTTP requests,
as well as their callback routines. In this context, our main
contribution is developing a unified framework for controlling
the execution order of the various types of racing events.

Our replay framework differs from the mechanisms used
by existing race detection tools such as EVENTRACER, WAVE,
and R4, because it is implemented within the target web appli-
cation itself and therefore is platform-agnostic. That is, we do
not modify the web browsers or their underlying JavaScript ex-
ecution engines (e.g., WEBKIT). Instead, we leverage source-
code transformation to add self-monitoring and control capa-

bilities to the application itself (see Section V). This is better
than existing approaches because technologies are changing
rapidly and tools implemented using a particular version of
the browser will quickly become obsolete. In contrast, our
platform-agnostic approach will be more robust against these
changes and updates.

Since we concretely execute the application using deter-
ministic replay, as opposed to heuristically filtering the warn-
ings [21], [22] or applying conservative static analysis [18],
[32], we can robustly decide if a race condition is real (i.e., if
both execution orders are feasible). The reason why existing
tools report many bogus race conditions in the first place is
because some hidden happens-before relations between events
are not accounted for, and precisely capturing all happens-
before relations would have been prohibitively expensive.

The second challenge is to decide, during state recording
and comparison, which fields of the program state are impor-
tant and thus should be compared. For a typical client-side web
application, the number of fields can be extremely large, which
means including all of them would result in large overhead at
run time. Furthermore, many fields are actually designed to be
sensitive to other sources of nondeterminism that are irrelevant
to the race condition. For example, there are fields that need
to have different values depending on the date or time of the
day. In such cases, we should exclude them in order to avoid
the false positives.

Therefore, our main contribution in this context is develop-
ing a flexible configuration interface to allow users to specify
which fields should be excluded. We also propose a testing-
based method (see Section VI) to automatically identify and
exclude these irrelevant fields.

We implemented and evaluated RCLASSIFY on standard
benchmarks and real websites from Fortune-500 companies.
Our experiments show that RCLASSIFY outperforms all other
existing tools capable of handling the same benchmarks,
including EVENTRACER [22], Mutlu et al. [18], and R4 [9].
For example, RCLASSIFY identified all 33 known-to-be-
harmful races out of the 50 warnings in standard benchmarks,
whereas R4 identified only 8 of them and Mutlu et al. [18]
did not identify any. Furthermore, on the seventy randomly
chosen websites from the portals of Fortunate-500 companies,
EVENTRACER [22] returned 1,903 warnings, among which
RCLASSIFY identified 73 as bogus, 132 as harmful, 1644
as harmless, and 54 as undecided. We manually reviewed
the 132 harmful races and confirmed the correctness of our
classification; in contrast, R4 [9] identified only 33 of the
harmful races, indicating that it is significantly less effective.

To sum up, this paper makes the following contributions:

o« We propose an evidence-based method for classifying
race-condition warnings in web applications, by con-
cretely executing the application to assess the actual
impact of racing events.

o We develop a platform-agnostic deterministic replay
framework for JavaScript-based web applications, which
does not rely on modifying browsers or JavaScript en-
gines, and thus is more widely applicable.

o We evaluate the new method on standard benchmarks as
well as a large number of real websites to demonstrate its
effectiveness in identifying the harmful race conditions.

1 <html>
<head> ...
<body>

4 <img src="imagel.jpg" onload="imagelLoaded ()"

id="imagel">
<!-- omitted elements...

6 <script id="scriptl">

7 function imagelLoaded() {

8 document .getElementById("buttonl")

.addEventListener("click", func);

</head>

-—>

9 }

10 function func() {

11 document .getElementById("outputField") .innerHTML
= "Well done!";

12 }

13 </script>

14 <!-- omitted elements... -->

15 <button id="buttonl"> buttonl </button>
16 <!-- omitted elements... —-->

17 <div id="outputField"> </div>

18 </body>

19 </html>

Fig. 2. Example: A client-side web application with race conditions.

II. MOTIVATION

In this section, we use examples to illustrate the ideas behind
our new method while highlighting the technical challenges.

A. Race Conditions

Consider the web page in Fig. 2, which contains an image,
a button, and a JavaScript code block. The image.onload
event, fired after the browser downloads image1, invokes the
imagelLoaded () function, which in turn attaches a listener
function to the onclick event of buttoni. The button may
be clicked by the user immediately after it is parsed, and
its listener function func() changes text in outputField to
"Well done!’ Thus, the expected event sequence is evg:
parsing(imagel) — evy: parsing(scriptl) — evy: pars-
ing(button1) — evs: firing(imagel.onload) — evy: parsing
(outputField) — evs: firing(buttoni.onclick).

However, depending on the network speed, load of the
computer, and timing of the user click, there may be other
execution sequences, some of which do not lead to the
expected display of ’'well done!’. As shown in the partial
order of events in Fig. 3, there are four race conditions:

1) RC1 is (evy, evs) over imagelloaded
a) event evy: parsing(scripti)
b) event evs: firing(imagel.onload)
2) RC2 is (evq, evs) over buttonl

a) event evs: parsing(buttonl)
b) event evs: firing(imagel.onload)

3) RC3 is (evs, evs) over buttonl

a) event evs: firing(imagel.onload)
b) event evs: firing(buttoni.onclick)
4) RC4 is (evy, evs) over outputField
a) event evy: parsing(outputField)
b) event evs: firing(buttoni.onclick)

The first race condition (RC1) is between the parsing of
HTML element script1 and the firing of imagei.onload. Typ-
ically, the parsing finishes first, but if image1 is downloaded
before the parsing finishes, e.g., due to caching of the image
or slow parsing of other HTML elements preceding scripti,

C
y
©
=

Browser

|

€, Parsed:imagel

Network

» Download: imagel.jpg

€3
imagel.onload_ -7 Finished: image1.jpg

P

€1 Parsed: scriptl

v
€z
Parsed: button1

Button1 ready to click «

buttonl.onclick

e
User clicked button1 <
-
wed: outputFi
e, l

Fig. 3. Partial order graph of the racing events of the example in Fig. 2.

imagelLoaded will be undefined when the browser invokes it
through imagel.onload.

The second race condition (RC2) is between the parsing of
buttonl and the firing of imagei.onload. Here, we assume
the unwanted situation regarding RC1 did not occur (ev;
precedes evs and imagelLoaded iS properly defined). In this
case, it is still possible for imagei.onload to happen before the
parsing of buttoni, thereby causing document.getElementByld
(“buttonl”) at Line 8 to fail.

The third race condition (RC3) is between imagel.onload
and buttoni.onclick. Here, we again assume the unwanted
situations regarding RC1 and RC2 did not occur (ev; and evy
precede evs). However, it is possible for button1 to be clicked
before the firing of imagel.onload. Since func () has not yet
been attached to buttoni.onclick, clicking the button will not
lead to the desired behavior.

The fourth race condition (RC4) is between the pars-
ing of HTML element outputField and the firing of
buttoni.onclick. Here, we again assume that none of the
unwanted situations regarding RC1, RC2, and RC3 occurred.
However, it is possible for puttonl to be clicked and yet the
"Well done!’ message is not displayed. This occurs when the
button is clicked before the parsing of outputField, causing
document.getElementByld (“outputField”) at Line 11 to fail.

The example in Fig. 2 and Fig. 3 shows that race conditions
in web applications are tricky: Developers may have to spend
long hours weeding out the bogus warnings, if the race
detection tools report too many false positives to them. Our
work aims to lift this burden from developers, thus allowing
them to focus on diagnosing the truly harmful race conditions.

B. Harmful Race Conditions

We leverage deterministic replay and state comparison to
identify harmful races. Let (ev,, evp) be a potential race condi-
tion (e.g., reported by EVENTRACER). We perform controlled
executions of the application twice, first with ev, before evy,
and then with ev, after ev,. If any of these executions is
infeasible, the replay fails, indicating that it is a bogus warning.
Otherwise, we record the program states at the end of the two
executions and compare them.

Consider RCI in Fig. 2. First, we execute the application
while forcing ev; before evs, which leads to the expected event
sequence. Then, we execute the application while forcing evs

<input id="input_1" type="text" value="Name"
onfocus="clearText (this) ">

<input id="input_2" type="text" value="Email"
onfocus="clearText (this) ">

)

3 <script id="script2" src="nyl-min.js"> ... </script>
4 <script id="scriptl">

5 <!-- adding async script "utag.js" to DOM —-->

6 </script>

8§ <!-- nyl-min.js —-->

function clearText (a) {

10 if (a.defaultValue==a.value)
1 ...
12 <!-- utag.js —-—>

13 function c() {

14 if(!done) { done = true; ... } }

15 document.addEventListener ("DOMContentLoaded", c, false);
16 window.addEventListener ("load", c, false);

{a.value=""} }

Fig. 4. Race conditions that we detected from www.newyorklife.com.

before evy. Both executions are feasible, and the second exe-
cution invokes imagelLoaded before it is defined, causing the
browser to print an error message in the console window. The
event handler for buttoni.onclick also remains uninitialized,
subsequently causing a difference in outputField. Therefore,
we say that RC1 is a harmful race, meaning that it deserves
the attention of the developers.

However, not all real race conditions are harmful.
Among the three race conditions in Fig. 4, which were
detected by RCLASSIFY from www.newyorklife.com, the
one between parsing of utag.js and firing of docu-
ment.onDOM ContentLoaded is harmless, while the two races
over input_1 and input_2 are harmful. The first race
is harmless because although the event handler of docu-
ment.onDOMContentLoaded may be registered (by utag.js)
after the browser fires the document.onDOM ContentLoaded
event, the same callback function c() is also registered to
window.onload as a precaution. Since window.onload always
execute after the load of utag.js, it ensures that c () is executed,
thereby resulting in the same program state.

However, the two races over input_1 and input_2 are
harmful because they initially show the hint values ’ Name’ and
"Email’ to the user, but their onfocus event handlers, which
call clearText (), will empty these hint values as soon as
the user tries to type into the text areas. Unfortunately, the
script that defines clearText () may be parsed after the user
typed something into the two fields — assume ’ USERTYPED’ iS
what the user typed. This can lead to unwanted text contents
such as ' NamUSERTYPEDe’ Of 'NameUSERTYPED’ instead of just
' USERTYPED’ . Our evidence-based method can correctly iden-
tify these two races as harmful, since they led to significant dif-
ferences in the program states. In contrast, EVENTRACER [22]
reported all three races to the user, whereas Mutlu et al. [18§]
could not detect any of them.

III. PRELIMINARIES
A. Web Applications

A modern HTML page consists of a set of elements, each
with opening/closing tags and the content in between, e.g.,
<p>...</p> for a paragraph. In addition, elements may be
added dynamically by executing JavaScript code. The docu-
ment object model (DOM) is a tree representation of the web
page to be rendered by the browser. Each DOM node has

attributes for holding meta-data, e.g., the element has
the src attribute indicating the URL of the image. JavaScript
may be embedded in the HTML file or declared externally,
e.g., <script src="code.js"> </script>; by default, they
are synchronous and therefore must be parsed before the
browser can move to the next HTML element. However,
external scripts with the “defer” attribute will run after all
static HTML elements are parsed, whereas ’async” scripts may
run at any time after they are downloaded.

Web applications follow an event-driven execution model,
where various handlers are registered to events of DOM nodes
to react to the user and the environment. An event may be
propagated through the DOM tree through “capturing” and
“bubbling”. For example, if a button is clicked, the onclick
event will be fired not only for this button but also for DOM
nodes that recursively contain this button. The propagation is
performed level by level, all the way up to the window object.
Any onclick event handler registered to DOM nodes along this
chain of propagation will also be fired.

The execution trace of a web application is a sequence of
events, denoted p = evy,...,ev,. Each event is of the form
ev = (id, type, info, mem), where id is the element ID, type
is the event type, info stores additional information of the
DOM node, and mem stores information of shared memory
access. We consider five event types:

o parse(element), which represents the parsing of an el-
ement. Static elements are parsed sequentially following
the order in which they are declared in the HTML.

o czecute(js), which represents the execution of an embed-
ded, deferred, or asynchronous JavaScript code block.

o fire(ev_cb), which represents the execution of a callback
function ev_cb in response of an event, such as the
onclick event of a button.

e fire(tm_cb), which represents the execution of a callback
function ¢m_cb in response of a timer, registered using
either setInterval() or setTimeOut().

o fire(ajaz_cb), which represents the execution of a call-
back function ajaz_cb in response to an Ajax request.

Let PS be the set of program states. Each state ps =
(DOM, JS, Env, Console) is a memory snapshot, where
DOM 1is the DOM content, JS is a valuation of JavaScript
variables, Env is a valuation of the browser’s environment
variables, and Console denotes console messages. An execu-
tion is a sequence A = PSy —= PS| —2 PSg... —% psp,
where psy,...,ps, € PS are program states, evy,...,ev,
are events, and for each 1 <17 < n, we have ps;_1 iy PS;.

B. Race Conditions

Since the web browser ensures that each JavaScript-based
event handler function is executed atomically, it is impossible
for individual JavaScript statements to interleave. Thus, web
applications do not have data-races in the traditional sense
(unlike multithreaded Java or C++ programs). However, there
are still race conditions at higher levels. For example, a web
application may consider fast rendering of visual elements as a
priority, while asynchronously loading images and JavaScript
libraries. In such cases, event handlers of the visual elements
may be made available to users long before the corresponding
JavaScript functions are defined.

Before formally defining race conditions, we define the
must-happens-before relation —,,,,5, which is a binary relation
over events. We say (evg,evy) €—pmpp if and only if ev,
precedes evy, in all possible executions of the web application.
If ev, precedes ev, only in a particular execution, we say
ev, < ewy in this execution. Let WR(ev) be the set of memory
locations written by ev, and RD(ev) be the set of memory
locations read by ev. A race condition is defined as a pair
(evq, evy) of events such that

1) (eva,evy) €—mnb, (evp, €Vq) E—mnp, and

2) 3 var such that var € WR(ev,) N WR(ew,) or var €

WR(ev,) N RD(ewvy) or var € RD(ev,) N WR(ew).
However, (ev,, evy) may not be considered harmful if it does
not affect the program behavior [1]. Thus, we say a race
condition is harmful only if there exist two executions A; and
Ao such that (1) ev, < evy in A1, (2) ev, < ev, in A9, and
(3) the two resulting program states ps; and psa are different.

IV. THE ALGORITHM OF RCLASSIFY

RCLASSIFY takes the URL of the web application and
a set of race-condition warnings as input, and returns the
classification results as output (Fig. 1). It first removes the
bogus races, where at least one of the two executions is shown
to be infeasible. Next, it removes the real but harmless races,
where the two executions do not result in differences in the
program states. In both steps, we need to deterministically
replay the web application.

Toward this end, we first download the application following
the URL and then instrument the HTML files to add self-
logging capabilities. We want to record information of the
racing events during race detection, so we can identify and
control these events during deterministic replay. In this work,
we used EVENTRACER [22] to generate race-condition warn-
ings (input of RCLASSIFY), although other race detection tools
may be used as well.

Next, we classify these warnings using replay and state
comparison. For each pair (ev,, evy) of racing events, we first
execute ev, before ev, (denote A1) and then execute ewv, before
ev, (denoted \»). In both executions, we fix the order of other
events as much as possible.

If both executions are feasible, we call (ev,, ev,) a real race
condition, and record the global states at the end. Let ps; and
psa be the two states resulting from A, and A, respectively.
We say (ev,evy) is a harmful race if there are significant
differences in ps; and pss.

In the remainder of this section, we explain how to in-
strument the web application and analyze the race-condition
warnings to prepare for the subsequent deterministic replay. In
Sections V and VI, we will explain how to control the event
order and record/compare program states.

A. Instrumenting the HTML Files

One input of RCLASSIFY is the URL of the target web
application, consisting of the HTML files and other resource
files, such as Cascading Style Sheets (CSS), JavaScript code,
images, audio, and video. After fetching these files, we instru-
ment them before using them as input of the race detection
tool (EVENTRACER); it allows us to generate information of
the racing events for deterministic replay.

I <html>
<head>
<script src="Pre_RClassify.]js"></script>
4 <!-- start of head elements —-->
6 </head>
<body>
9 <!-- end of body elements —-->
10 <script> window.addEventListener ("load",
RC_fire_handlers, false); </script>

11 </body>
12 </html>

Fig. 5. Example: Instrumented web page prior to race detection.

We use an open-source HTML parser called JSoup
(http://jsoup.org/). We generate a unique id attribute for each
HTML element, to help pinpoint the HTML element involved
in the racing event at run time and therefore control its
execution order during replay. We also insert our own library
code Pre_RClassify.js, to the HTML head element. This
library code block will be executed before the browser loads
the body of the web page, thereby allowing us to track the
execution of all racing events.

Our instrumentation is designed to collect information about
the race-condition warnings. Fig. 5 shows an example, where
Lines 3 and 10 are added during our instrumentation. They
execute Pre_RClassify.js at the start of the head element,
to redefine API functions such as addEventListener() and
setTimeOut() so we can intercept these function calls at run
time. Specifically, we replace them with wrapper functions,
which invoke the original APIs but also gather information of
the racing events for later phases of our algorithm.

We also insert a window.onload event handler at the end
of the HTML body element, to be fired after the page is
fully loaded. Our function RC_fire_handlers() goes through
all registered event handlers that require user actions, and
fires them one by one, to simulate user interactions. By
automatically dispatching these event handlers, as opposed to
relying on clicks from the user [21], we have improved the
coverage compared to existing race detectors.

B. Analyzing Race-condition Warnings

Another input of RCLASSIFY is the set of race-condition
warnings. In our work, the race detector is EVENTRACER,
which uses a modified version of WEBKIT to generate a trace
log while loading the web page. Then, it analyzes the trace log
to build a happens-before model to capture global resources
that have conflicting accesses. Two accesses are conflicting
if they refer to the same memory location and at least one of
them is a write operation. However, the happens-before model
in EVENTRACER is not precise enough to separate harmful
races from bogus/harmless ones [22]. Our work focuses on
precisely classifying these race-condition warnings.

Toward this end, we statically analyze the warnings to
compute the information required by deterministic replay. We
use JSOUP to create two instrumented versions of the web
application. In one version, the self-control capability ensures
ev, < euvp; in the other version, it ensures ev, < ev,. To
prevent interference from other pairs of racing events, we force
all other racing events to maintain their original execution
order instead of allowing them to interleave freely.

1 <html>
<head>
<!-- load replay info of all races here ...
4 <script src="RClassify.]js"></script>

6 </head>

7 <body>

8 RN

9 <!-- end of the element m -->

10 <script> RC_detect_handler_changes(); </script>

11 RN

12 <!-- end of all body elements —-->

13 <script> window.addEventListener ("load",
RC_dump_state, false); </script>

14 </body>

15 </html>

Fig. 6. Example: Instrumented web page prior to deterministic replay.

For example, given two warnings RCi(ev,,evy)
and RCs(ev.,ev,), the first execution may be
Al = Psg...ps; —< ...DSj ey psp =2 ... ps, where
ev, < evy. To classify RC}, we obtain the second execution
Ao = PSg...DSi — . ..pSj — ... psh % ... ps,, where
evp < ev,. In both executions, we try to maintain the order
ev. < ev, for RCs.

Fig. 6 shows an example of the instrumented HTML
file. Similar to Fig. 5, it loads another of our libraries,
RClassify.js, at the start of the head element, as well
as information of the racing events. This library contains
functions to control the execution order of racing events and
record the program state. We also insert a JavaScript code
snippet to invoke the function RC_detect_handler_changes()
after the parsing of every HTML element (Line 10). It checks
if the list of event handlers attached to any element of the
DOM has changed. If new handlers have been added, we
retrieve and instrument them so as to track their executions
at run time.

When loading the racing events (Line 3), if ev, needs to
be executed before evy,, we put ev, into the to WaitList[evy).
During replay, we monitor all racing events dynamically and
force ev, to wait for all events in toWaitList[ev] before
executing ev,. For multiple warnings, however, it is not always
possible to maintain the execution order of all other racing
events while flipping the race condition under investigation.
This is because reversing the order of a race condition may
invalidate the order of other race conditions. For example,
consider RC (evg, ev.), RCa(ev,, evy) and RC5(evy, ev.) in
an execution where ev, < evy < ev.. When reversing RC1,
maintaining the original order of RC and RC'3 becomes
impossible.

In such cases, we try to maintain the order of as many of
the other races as possible. That is, after loading the ordering
information of the reversed RC and the original RC5, we
discover that they conflict with the original order of RC'.
Therefore, we ignore RC5 and obtain an execution where
eV; < evg < EVp.

When the must-happens-before relation among race condi-
tions are available, we use it to further refine the execution
order information needed for replay. For example, if there is
a must-happens-before relation ev, —np €vp, We know the
order of ev, and ev, cannot be flipped. Although analyzing
RC,7 or RC5 alone would not detect any conflict, when

reversing RC1, we know that it is no longer possible to
maintain both RCy and RC'5. Therefore, we ignore RC5 and
obtain an execution where ev. < ev, < euvp.

We also insert a window.onload handler at the end (Line 13).
The function rRc_dump_state saves all relevant fields of the
global state into a disk file. After recording the two program
states, we compare them to decide if the race is harmful. We
say (ev,,ewvy) is harmful if the two states are significantly
different. Toward this end, an important problem is to identify
fields that may be affected by sources of nondeterminism other
than race conditions; failure to do so will lead to harmless
races to be incorrectly classified as harmful races.

In the next sections, we explain in detail how to accurately
control the order of racing events during replay and how to
compare relevant fields of the program states.

V. CONTROLLED EXECUTIONS

To replay the racing events, we need to intercept them and
control their execution order at run time.

A. Intercepting the Callback Functions

We want to intercept the registration, invocation, and re-
moval of callback functions for all global events, timers, and
AJAX requests. We replace each callback function with a
wrapper that, prior to invoking the original function, checks if
the invocation should be postponed.

Broadly speaking, there are two types of callback functions
for handling events. Type 1 handlers are installed by setting
a DOM element’s attribute such as el.onload and el.onclick.
Type 2 handlers, in contrast, are added and removed by calling
addEventListener() and removeEventListener(), respectively.
Each element may have multiple Type 2 handlers, stored in the
browser as opposed to the DOM itself; as such, these handlers
cannot be accessed by traversing the DOM tree. Third-party
libraries such as JQUERY may define their own APIs, such as
JjQuery.bind() and jQuery.detach(), for managing event han-
dlers. But internally they still rely on the two aforementioned
mechanisms.

The addition and removal of Type 1 event handlers (via
attributes such as el.onclick) are difficult to intercept at run
time, since it is possible for the parsing of any HTML element
(e.g., script elements) to add or remove event handlers. In
RCLASSIFY, we do not modify the underlying web browser
or intercept the execution of each individual JavaScript in-
struction. Instead, our instrumentation is performed at the
HTML file level. To solve this problem, we developed a unified
framework for detecting changes to event handlers, which
periodically scans the DOM and compares it with a copy of
the DOM recorded during the previous scan. If there is any
change in the DOM element’s Type 1 event handler, e.g., the
addition or modification of el.onclick, we will detect it.

In Fig. 6, for example, the scan is implemented using
JavaScript in RC_detect_handler_changes (). By statically
instrumenting the HTML file, at run time we can invoke this
function right after the parsing of each HTML element or
the execution of each callback function that may modify the
DOM. To reduce the runtime overhead, we statically analyze
the HTML elements to invoke this function only if needed,
e.g., after the parsing of JavaScript code, embedded HTML,
and other elements whose event handlers contain racing events.

Algorithm 1 Scanning and instrumenting event handlers.

1: RC_detect_handler_changes () {
for each (el € document.all_elements) {
for each (eh_type € all_event_handler_types) {
if (el[eh_type] has changed) {
event_str = compose_es (el.id, eh_type);
orig_func = elleh_typel;
if (is_racing_event (event_str))
elleh_type] = Replace_callback (event_str, orig_func),

P o0 RID WY
—

Algorithm 2 Controlling execution of callback functions.

1: Replace_callback (event_str, orig_func) {

2: function RC_func() {

3: if (orig_func is defined)

4: if (- racing_event_finished_waiting (event_str))
5: postponed Event.push (RC_func),

6: else

7. orig_func.call (arguments);

8:

9: return RC_func;

10: }

The pseudocode is shown in Algorithm 1, which first scans
the DOM to identify any change of el[eh_type], corresponding
to the event el.eh_type, and then instruments the handler:
var orig_func = el.onclick; el.onclick = Replace_callback
(event_str, orig_func) { generate and return RC_func; ...},
where RC_func is a dynamically generated instance of
orig_func. In addition to controlling the execution order,
RC_func also invokes the original function orig_func. Inter-
nally, Replace_callback () creates the wrapper RC_func using
event_str and orig_func, and uses it to replace the original
function.

Type 2 event handlers are intercept by replacing addE-
ventListener() and removeEventListener() with wrapper func-
tions while loading RClassify.js in the HTML head ele-
ment. Internally, the procedure executes var orig addEL =
addEventListener, addEventListener = function new_addrI()
{orig_addri();...} Therefore, at runtime, instead of invoking
the original function, it would invoke new_addeL (). Instead of
adding orig_func as an event handler, new_addel () dynami-
cally creates a wrapper function RC_func as the event handler.

B. Controlling the Execution Order

After a callback function is replaced with its wrapper
function, the execution order can be controlled with respect to
other racing events. Specifically, the callback is instrumented
according to Algorithm 2, where orig_func() is replaced by
a dynamically generated instance of RC_func(). We control
the event execution order by conditionally postponing the
corresponding callback functions. When a racing event is
about to be dispatched, instead of executing the original
function directly, we call the function RC_func, which in turn
checks if the corresponding orig_func is ready to execute. Each
event ev has a precomputed set of events (toWaitList[ev])
that need to be executed before ev. If an event needs to be
postponed, the function RC_func will be put into the waiting
list. The list is checked periodically to ensure that callbacks
are executed immediately after they are ready.

To ensure that replay does not deadlock, we use a counter
inside each RC_func to record the number of times it has been

postponed (not shown in Algorithm 2 for brevity). When the
counter reaches a certain threshold, say 200, we assume that it
has waited too long and thus declare that replay failed. After
that, it will stop waiting and enter a free run.

The reason why replay may fail is because some racing
events simply cannot be flipped (e.g., bogus race). In this
sense, our method can robustly handle bogus races. However,
it is not the most efficient way to detect bogus races, since
waiting for replay to fail consumes a significant amount of
time. Therefore, we also developed a cheaper mechanism for
identifying certain bogus races common in web applications.
Recall that bogus races are largely due to limitations of
race detectors in modeling happen-before relationships. Cer-
tain event handlers, such as document.onDOM ContentLoaded
and window.onload, have somewhat fixed execution time:
they are fired either after the entire HTML is parsed, or
after all resources are loaded. Therefore, if a reported race
is between the parsing of an HTML element and docu-
ment.onDOM ContentLoaded or window.onload, we know for
sure that it is a bogus race. In such case, we can skip replay
because replay is guaranteed to fail.

VI. PROGRAM STATE COMPARISON

We record the program states after both controlled execu-
tions and then compare their fields.

A. State Recording

After the web page is fully loaded, we serialize the program
state and store the result in a disk file. We initiate state
recording when the following two conditions are met: (1) the
web page is fully loaded, and (2) all racing events have finished
executing. We consider the following fields as parts of the
program state:

1) The DOM: We record the value of all HTML elements,
their attributes, and Type 1 event handlers. We also
intercept all Type 2 event handlers and store them in
a special DOM attribute.

2) JavaScript variables: We record the value of all
JavaScript global variables since they affect the behavior
of the application.

3) Environment variables: We record the value of environ-
ment variables associated with the browser, such as the
height and width of the window.

4) Console messages: We record runtime information dis-
played in console.log, console.warn and console.error.
They are invisible to end-users but useful to developers.

All JavaScript functions and variables used to implement
RCLASSIFY are defined in a specific name space and thus
can be excluded from the program state easily.

To serialize the data fields into a string, thus allowing
them to be compared easily, we use the JSON.stringify()
API. However, JSON does not directly handle data with
cyclic dependency, which are common in web applications.
To solve this problem, we implemented a JavaScript method
that traverses the DOM object in the BFS order and marks
each visited node with a unique identifier. If it encounters a
visited object again, it replaces the reference to that object
with its unique identifier. Since the resulting representation is
guaranteed to be acyclic, it can be serialized to a string using
JSON.stringify().

B. State Comparison

To compare two program states, we first use JSON.parse
to restore the data fields from disk files and construct two
key-value tables. For the DOM, we use the element’s id
attribute as the key (the unique id generated by our HTML
instrumentation) and the HTML content as the value. For
JavaScript variables and environment variables, we use the
variable name as the key. For console messages, we use their
order in the console as the key. We say the race condition
is harmless if the two states are identical. We say the race
condition is harmful if they differ in the DOM or JavaScript
global variables. If they differ only in console logs or the value
of some environment variables, we assume the race condition
is likely harmless but we still report it as a warning.

Sometimes, certain fields of the DOM or JavaScript vari-
ables may have nondeterministic values due to reasons other
than race conditions. For example, an application may record
the last time it is executed or create a session ID that is
different every time it is executed. To exclude such fields in
state comparison — since they may lead to false positives —
we developed a mechanism for users to specify which fields
should be excluded. We also developed a heuristic method for
filtering out such irrelevant fields automatically.

Our solution is to execute the web application three times,
with the following event orders: ev, < evp, ev, < evp, and
evp < ev,. After that, we use a three-way comparison to check
the state differences. If there exists a field that has different
values in all three states, then we consider it as an irrelevant
field. If a field has the same value in the first two states, but
a different value in the third state, then we consider it as a
relevant field.

VII. EXPERIMENTS

We have implemented our evidence-based classification
method in a software tool (RCLASSIFY), which builds upon a
number of open-source software. Our libraries for monitoring
and controlling racing events is written in 2.1K lines of
JavaScript code. Our front-end for HTML instrumentation is
implemented using Jsoup 1.8.1 in 2.4K lines of Java code.
We leverage EVENTRACER to generate the race-condition
warnings (our input). During the experiments, we store bench-
marks under test in a local web server. We use Teleport Ultra
1.69 to download the source files of real websites before
instrumenting them. We use Mozila Firefox as the web browser
— we experimented with versions ranging from 35.0 to 47.0
and did not encounter any incompatibility issue.

Our benchmarks fall into two groups. The first group
consists of standard web application benchmarks from recent
publications such as EVENTRACER [21], [22] and WAVE [7].
Since they are written specifically for illustrating various
types of race conditions, most of them have known-to-be-
harmful races, and our goal is to confirm that RCLASSIFY
can correctly identify them. The second group consists of
seventy real websites randomly chosen from the portals of
the Fortune-500 companies. Previously, EVENTRACER was
applied to the same type of websites and reported many bogus
warnings. Therefore, our goal is to see if RCLASSIFY can do
better than state-of-the-art techniques, which include not only
EVENTRACER [22], but also Mutlu et al. [18] and R4 [9].

That is, can RCLASSIFY accurately classify these warnings
while maintaining a low runtime cost? Our experiments were
conducted on a machine with Intel Core 17-4700 2.4 GHz CPU
and 4 GB RAM running 64-bit Ubuntu.

A. Results on Standard Benchmarks

Table I shows our results on the standard benchmarks.
Columns 1-2 show the benchmark name and number of
race-condition warnings (input of RCLASSIFY). Column 3
shows the number of bogus races that RCLASSIFY identified.
Columns 4-8 show the number of harmful races, harmless
races, and undetermined cases (Undet), respectively. Column 9
shows the total time taken by RCLASSIFY. Note that some
warnings cannot be generated by the race detector EVEN-
TRACER due to its own limitations; for these warnings, we
manually created them and gave them to RCLASSIFY. We
checked all 50 input warnings manually and confirmed that
RCLASSIFY produced the correct classification.

Specifically, the 13 harmless races fall into three groups:
none means there are no differences in the program states;
con. means there are differences in console logs only; and
b/c/t means the differences are due to event “bubbling” and
“capturing” or a “timer-try” pattern. Event bubbling and
capturing (b/c) lead to duplicated events on the upper-level
elements. For example, if a windows has 100 buttons, each
of the 100 button.onclick events can be bubbled up to trigger
document.onclick. In such case, there will be 100 races re-
ported on document.onclick. Timer-try (t) is when a function
repeatedly postpones its execution via setTimeout() until some
condition is satisfied. The nature of these races means they
are likely harmless.

We also downloaded and applied the tools from Mutlu et
al. [18] and Jessen et al. [9] (R4). Mutlu et al. [18] was
designed to report only harmful races, but it reported O races
despite that 33 of the 50 races were known-to-be-harmful.
R4 [9] focuses on applying stateless model checking to web
applications to systematically explore the event interleavings,
but also can filter race-condition warnings. Our experiments
showed that

e R4 detected only 21 race conditions, among which it
classified 8 as harmful (H), 1 as normal-risk (N), and
12 as low-risk (L).

e Our manual inspection showed that, whereas the 8 races
marked as harmful (H) by R4 are indeed harmful, 3 of
the other 13 races (which were not marked as harmful by
R4) are also harmful.

Altogether, R4 reported only 8 (out of the 33) harmful races
while missing the other 25.

B. Results on Real Websites

Table II shows the results of our experiments on real
websites. Since going through all web portals of the Fortune-
500 companies takes too much time, we randomly selected
seventy companies and applied EVENTRACER to generate the
initial set of race-condition warnings. Among them, twenty
websites do not have any EVENTRACER-reported warnings;
for the remaining fifty websites, the results are shown in the
table. Columns 1-2 show the website name and the number
of EVENTRACER-reported warnings (input of RCLASSIFY).

TABLE I
EXPERIMENTAL RESULTS ON THE STANDARD BENCHMARKS.

Name ‘Warning [Bogus [Harmful Harmless Undet.| Time [[From[18] [[From[9]

(input) con. b/c/t none Harmful || H/N/L
WebR_ex1 I 0 0 T 0 0 0 23.8s 0 0/1/0
WebR_ex2 1 0 1 0 0 0 0 23.8s 0 0/0/0
WebR_ex3 1 0 1 0 0 0 0 23.8s 0 0/0/1
‘WebR_ex4 1 0 1 0 0 0 0 23.8s 0 0/0/0
WebR_ex5 1 0 0 1 0 0 0 24.1s 0 0/0/0
EventR_ex1 I 0 0 1 0 0 0 23.8s 0 1/0/0
EventR_ex2 1 0 1 0 0 0 0 23.8s 0 0/0/1
EventR_tut 3 0 3 0 0 0 0 1m10s 0 0/0/0
Kkaist_exT I 0 0 T 0 0 0 23.8s 0 0/0/1
kaist_ex2 1 0 0 1 0 0 0 25.0s 0 1/0/0
kaist_ex3 3 0 1 2 0 0 0 Im10s 0 1/0/0
kaist_casel 6 0 4 1 1 0 0 2m20s 0 1/072
kaist_case2 3 0 3 0 0 0 0 47.2s 0 1/0/1
kaist_case3 4 1 2 1 0 0 0 1m35s 0 1/0/0
kaist_case4 7 4 3 0 0 0 0 1m51s 0 0/0/3
kaist_case5 3 0 3 0 0 0 0 Imlls 0 0/0/1
kaist_case6 3 0 2 1 0 0 0 24.3s 0 1/0/0
kaist_case7 7 0 6 1 0 0 0 2m50s 0 0/0/1
kaist_case8 2 0 2 0 0 0 0 47.6s 0 1/0/1
Total 50 5 33 11 1 0 0 0 8/1/12

1 <script id="script_1">

2 function show () {

3 document .getElementById("dw") .style.display="block";

4 }

5 </script>

6 link
<div id="dw" style="display:none"> dw </div>

Fig. 7. A harmful race condition RCLASSIFY identified but R4 [9] missed.

Columns 3-8 show the number of bogus races, harmful
races, harmless races, and undecided cases, respectively. Col-
umn 9 shows the total time taken by RCLASSIFY). Finally,
Columns 10-12 show the results reported by R4.

While using EVENTRACER to generate the input warnings,
we found that some of the reported races do not make sense
since the racing events have empty read/write accesses (likely
due to defects in EVENTRACER); therefore, we filtered them
out before applying RCLASSIFY—they are labeled Undet. in
the table.

The results in Table II show that RCLASSIFY identified 132
harmful races out of 1,903 EVENTRACER reported warnings.
We manually inspected the state comparison results of these
races and confirmed the correctness of all classifications. An
example of the harmful races identified by RCLASSIFY is
already shown in Fig. 4, which turns out to be a real bug
from www.newyorklife.com. In contrast, R4 identified only
33 harmful races. There are also six websites on which R4
crashed — they are marked as “(CRASH)” in the table.

A closer investigation shows that R4 relies on the severity
of error logs and exception logs to determine the risk level
of each race. Although R4 saves a picture screenshot after
each execution for the user’s reference, it does not record
the program state. Even if the developers manually compare
screenshots, it is not as accurate or informative as comparing
the program states. For example, in Fig. 7, R4 failed to identify
the harmful race (occurred when hrefl is clicked before the
dw element is parsed, thus causing show() to access a non-
existing element) but there is no visual difference. In contrast,
RCLASSIFY can detect the difference in program states and
thus identify it as a harmful race.

While reviewing the classification results, we also noticed
that harmful race conditions from the same website were often

TABLE II
EXPERIMENTAL RESULTS ON REAL WEBSITES RANDOMLY CHOSEN FROM WEB PORTALS OF FORTUNE-500 COMPANIES.

Name Warning H Bogus ‘ Harmful | Harmless [Undet. ‘ Time ‘| Result of R4 [9] |
(input of RCLASSIFY) [console b/c/t none | [Harmful Normal Low |
WWW.aa.com 7 0 3 3 0 1 0 5m30s 2 7 24
www.adp.com 2 0 1 0 1 0 0 43.8s 8 14 15
www.ally.com 91 0 8 71 0 8 4 67m48s 0 1 1
www.altria.com 13 2 3 2 4 1 1 4mSs (CRASH)
WWW.amazon.com 10 6 0 0 3 0 1 0 (CRASH)
WWW.arrow.com 1 1 0 0 0 0 0 0 1 2 3
www.ashland.com 6 0 0 0 1 5 0 3ml7s (CRASH)
WWWw.autozone.com 9 4 1 0 2 0 2 41.6s 3 4 20
www.ball.com 2 0 0 2 0 0 0 Iml4s 0 0
www.bd.com 22 2 5 15 0 0 0 11ml6s 1 1 1
www.biogen.com 26 1 0 6 0 4 15 Tmd40s (CRASH)
www.boeing.com 4 1 0 1 0 2 0 1m39s 0 1 4
www.buckeye.com 23 1 1 4 0 16 1 12m53s 0 3 35
www.campbellsoupcompany.com 5 3 1 1 0 0 0 Im16s 0 0 3
www.coach.com 95 1 13 61 0 18 2 75m18s 0 0 1
WWW.cognizant.com 56 2 25 26 2 0 1 73m37s 0 1 2
www.disney.com 1 0 0 1 0 0 0 1m8s 0 4 4
www.dollartree.com 501 0 6 14 238 243 0 235m31s 0 8 5
www.freddiemac.com 1 1 0 0 0 0 0 0 0 0 0
www.generalcable.com 7 1 1 4 0 1 0 3m32s 0 0 1
www.heinz.com 3 1 0 2 0 0 0 1m22s 0 0 1
www.honeywell.com 1 0 1 0 0 0 0 0m36s 2 6 8
www.huntsman.com 70 2 18 0 0 45 5 21m18s 0 0 0
www.l-3com.com 404 0 0 0 109 294 1 161m18s 0 3 7
www.loews.com 4 3 1 0 0 0 0 37.6s 1 4 0
www.marathonoil.com 1 0 0 0 0 1 0 30.3s 0 2 2
www.mcdonalds.com 4 1 2 1 0 0 0 5m58s 2 0 5
www.newyorklife.com 18 13 2 1 1 0 1 1m49s 2 2 16
WWW.nov.com 5 1 0 1 3 0 0 Imls 0 0 32
WWW.pge.com 281 0 0 13 99 169 0 126m30s 0 0 2
Wwww.regions.com 14 8 0 4 0 1 1 3m33s 0 9 2
www.sandisk.com 5 2 1 1 0 1 0 1m42s 2 1 6
www.simon.com 1 1 0 0 0 0 0 0 0 1 0
WWW.sjm.com 12 0 1 5 3 3 0 4m59s 1 0 2
www.starbucks.com 8 2 1 0 4 1 0 1m38s 0 1 4
www.target.com 9 2 0 0 3 0 4 0 1 2 6
www.tractorsupply.com 7 1 0 1 0 0 5 43.2s 1 1 3
WWW.trw.com 8 0 0 0 3 5 0 2m48s 0 4 3
www.tysonfoods.com 1 0 0 1 0 0 0 53.7s 0 0 6
www.unfi.com 13 0 3 1 0 1 8 3m22s (CRASH)
www.unitedhealthgroup.com 11 1 0 7 3 0 0 4m10s 3 0 2
www.unitedrentals.com 7 1 1 4 0 0 1 3m46s 0 7
WWWw.unum.com 1 0 0 1 0 0 0 31.5s (CRASH)
www.valero.com 36 2 8 1 23 2 0 6m4ls 1 5 1
www.wd.com 2 1 0 0 1 0 0 0 1 0 1
www.wdc.com 2 1 0 0 1 0 0 0 0 1 1
WWW.Wesco.com 5 1 3 1 0 0 0 2m3s 0 0 1
www.weyerhaeuser.com 29 0 21 8 0 0 0 14m45s 0 0 0
www.wfscorp.com 16 1 0 8 0 6 1 7m33s 0 2 1
WWW.yum.com 43 2 1 1 11 28 0 15m36s 0 0 1
Total 1,903 73 132 273 515 856 54 33 90 240

correlated: fixing one race (e.g., by adding a must-happen-
before constraint) also fixes many of the other races.

The execution time of RCLASSIFY is largely determined
by how fast the browser loads the target web page, since we
need to wait for the page to be completely loaded before
recording the program state. In practice, it is common for
a website to have large resource files that take a significant
amount of time to download. An example is www.coach.com,
which may take tens of seconds to load completely and thus
increase the total execution time of RCLASSIFY. In addition,
we inserted several sleep commands in our framework to
ensure a smooth connection between operations, e.g., between
the script for saving the state recording file and the script
for loading the next web page. During state comparison, we
also run the same web application three times, among which
two are in the original execution order while the third one
is with the racing events flipped. For each individual replay,
we observed only a slowdown of 1.5-2X when compared to
a free run. Also note that we have not optimized the runtime
performance of our tool. Nevertheless, RCLASSIFY is fully
automated, and therefore is significantly more efficient than
manually classifying race-condition warnings.

C. Compared to Heuristic Filtering

We also compared RCLASSIFY with EVENTRACER’S
heuristic filtering, which does not check the effect of racing
events, but instead relies on event types and a limited number
of bug patterns. As such, they may report false positives as
well as miss harmful races. More specifically, EVENTRACER
has two levels of filtering. The first-level filtering aims at
removing benign races. The second-level filtering aims at
identifying high-risk (harmful) races. We use the-rest to denote
left-over races after these two levels of filtering.

Table III shows our experimental results. Of the 1,903
race-condition warnings, EVENTRACER’s heuristic filtering
identified 558 as high-risk (harmful), 372 as benign, and 973
as the-rest. In contrast, our method showed that only 38 of
the 558 high-risk (harmful) races are truly harmful, whereas
40 of the 372 benign races are harmful. In addition, 54 of
the 973 left-over races are also harmful. The results show that
heuristic filtering techniques are not effective in practice.

Fig. 8 shows a harmful race condition detected by RCLAS-
SIFY from the official website of Honeywell International, but
considered by EventRacer’s heuristic filtering as benign (they
call it filtered). The race condition is between the parsing of

TABLE III
RCLASSIFY VERSUS EVENTRACER’S HEURISTIC FILTERING [22].

Total EVENTRACER’S high-risk | EVENTRACER’s benign | EVENTRACER’s the-rest |

1,903 558 372 973
Harmful 38 (6.8%) 40 (10%) 54 (5.5%) |

asynchronous script jsapi (ev,) and the parsing of synchronous
script gssAutoComplete.js (evy). By executing these racing
events in different orders, RCLASSIFY detected differences in
many fields of the program states. Among them, one difference
is in the title field of the web page: When ev, < ev,, the
title is "Honeywell - Global Technology Leader in Energy
Efficiency, Clean Energy Generation, Safety & Security, and
Globalization”, but when ev, < euvp, the title is "Home”.

1 <!-- other elements -->
<script id="script_4">

>

3 DR

4 var gjsapi = document.createElement (’'script’);

5 gjsapi.type = ’text/javascript’;

gjsapi.src = (’'https:’ == document.location.protocol
? ’'https://’ : "http://") +
"www.google.com/jsapi’;

7 var s = document.getElementsByTagName (’script’) [0];

8 s.parentNode.insertBefore(gjsapi, s);

o v

10 </script>

11 <!-- other elements -->

12 <script type="text/javascript" id="script_26"
src="http://honeywell.com/_layouts/

13 InternetFramework/Scripts/gssAutoComplete. js"></script>

14 <!-- other elements -->

Fig. 8. A harmful race condition filtered out by EVENTRACER [22].

VIII. RELATED WORK

There are several existing tools for detecting race conditions
in web applications, some of which are based on conservative
static analysis (e.g., Zheng et al. [33] and ARROW [32]) while
others are based on dynamic analysis [22], [21], [7]. Static
analysis has the advantage of covering all possible execution
paths of the JavaScript code, but due to the rich set of
dynamic features in JavaScript and client-side web applica-
tions in general [6], [10], [23], [28], [16], [29], they cannot
robustly handle real websites. Dynamic analysis tools such as
EVENTRACER [22], [21] and WAVE [7] do not have such
limitations. However, they have limited code coverage and
often report many bogus warnings as well as miss real bugs.
Furthermore, none of these existing methods uses evidence-
based techniques to classify race conditions.

Mutlu et al. [18] proposed a method for detecting race
conditions using a combination of dynamic and static analysis
techniques. They obtain an execution trace and then use
predictive static analysis to detect races that may occur in all
possible interleavings of events of the given trace. However,
their method does not use deterministic replay to check the
actual impact of racing events and therefore may still report
bogus and harmless races. Furthermore, their tool is limited
to detecting certain types of races over persistent storage and
may miss many other races, as shown in our experiments.

Jensen et al. [9] proposed a stateless model checking tool
(R4) for systematically exploring event interleavings in a web
application. Unlike tools such as EVENTRACER [22], [21],

which detect races only in one trace, R4 can generate many
new traces from the given trace and detect races in these
traces. However, as shown in our experimental evaluation, R4
does not perform well in classifying the races: it missed many
harmful races and reported many false positives.

There are also software tools for recording the state of a
running web application [17], [2], [5], but the goal is to allow
developers to revisit the recorded program state to diagnose
bugs, or dynamically migrate the web application to other
platforms [4], [15], [14]. Therefore, although they also address
the state recording problem, the applications are significantly
different from ours: none of these prior works focuses on
diagnosing concurrency bugs.

For diagnosing data-races in multithreaded programs, there
is a large body of work [19], [25], [31], [26], [11], [24], [3],
[13], [12]. Specifically, Narayanasamy et al. [19] proposed
perhaps the first deterministic replay-based method for clas-
sifying data-races in multithreaded applications. They used
a checkpointing tool to take snapshots of the main memory
while executing the program, and compared the snapshots to
decide if a data-race is harmful. Similar works also include
Sen’s race-directed testing tool [25] and the Portend tool by
Kasikei et al. [11]. There are also many testing tools such
as CTrigger [20], PENELOPE [27], Fusion [30], and RV-
Predict [8] for multithreaded programs.

However, data-races in multithreaded C/C++ or Java pro-
grams are significantly different from race conditions in client-
side web applications. Specifically, the computing platforms
are significantly different in that one relies on multi-threading
whereas the other relies on event-driven execution. The sup-
porting tools are also different. For multithreaded programs,
there already exist a large number of checkpointing tools,
but for web applications, we are not aware of any such
checkpointing tool. Due to these reasons, both deterministic
replay and program-state comparison require drastically dif-
ferent solutions. Therefore, except for the high-level similar-
ity, RCLASSIFY is completely different from these existing
methods and tools.

IX. CONCLUSIONS

We have presented RCLASSIFY, the first evidence-based
method for automatically classifying race-condition warnings
in web applications. It identifies the real and harmful races
based on executing the racing events in different orders and
then comparing the program states. We also developed a purely
JavaScript-based, platform-agnostic framework for monitoring
and controlling the execution order of racing events. We have
implemented RCLASSIFY and evaluated it on both standard
benchmarks and a large set of real websites. Our experimental
results show that the new method is both effective in identi-
fying harmful races and scalable for practical use. For future
work, we plan to leverage RCLASSIFY not only to diagnose
race conditions but to automatically repair them.

X. ACKNOWLEDGMENTS

This work was primarily supported by the National Sci-
ence Foundation (NSF) under the grants CCF-1149454, CCF-
1405697, and CCF-1615834. Partial support was provided by
the Office of Naval Research (ONR) under the grant NO0O14-
13-1-0527.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabira-
man. Understanding JavaScript event-based interactions. In International
Conference on Software Engineering, pages 367-377, 2014.

Silviu Andrica and George Candea. WaRR: A tool for high-fidelity web
application record and replay. In IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 403-410, 2011.

Mitra Tabaei Befrouei, Chao Wang, and Georg Weissenbacher. Abstrac-
tion and mining of traces to explain concurrency bugs. In International
Conference on Runtime Verification, pages 162—177, 2014.

Federico Bellucci, Giuseppe Ghiani, Fabio Paterno, and Carmen Santoro.
Engineering JavaScript state persistence of web applications migrating
across multiple devices. In ACM SIGCHI Symposium on Engineering
Interactive Computing System, pages 105-110, 2011.

Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst.
Interactive record/replay for web application debugging. In ACM
Symposium on User Interface Software and Technology, pages 473484,
2013.

Salvatore Guarnieri and V. Benjamin Livshits. GATEKEEPER: mostly
static enforcement of security and reliability policies for JavaScript code.
In USENIX Security Symposium, pages 151-168, 2009.

Shin Hong, Yongbae Park, and Moonzoo Kim. Detecting concurrency
errors in client-side java script web applications. In IEEE International
Conference on Software Testing, Verification and Validation, pages 61—
70, 2014.

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal
sound predictive race detection with control flow abstraction. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 337-348, 2014.

Casper Svenning Jensen, Anders Mgller, Veselin Raychev, Dimitar
Dimitrov, and Martin T. Vechev. Stateless model checking of event-
driven applications. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, pages 57-73,
2015.

Simon Holm Jensen, Peter A. Jonsson, and Anders Mgller. Remedying
the Eval that men do. In International Symposium on Software Testing
and Analysis, pages 34-44, 2012.

Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs.
data race bugs: Telling the difference with portend. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 185-198, 2012.

Sepideh Khoshnood, Markus Kusano, and Chao Wang. ConcBugAssist:
Constraint solving for diagnosis and repair of concurrency bugs. In
International Symposium on Software Testing and Analysis, 2015.
Markus Kusano, Arijit Chattopadhyay, and Chao Wang. Dynamic in-
variant generation for concurrent programs. In International Conference
on Software Engineering, 2015.

James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. Imagen:
Runtime migration of browser sessions for javascript web applications.
In International World Wide Web Conference, pages 815-826, 2013.
James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. Live migration
of JavaScript web apps. In International World Wide Web Conference,
pages 241-244, 2013.

Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical
static analysis of JavaScript applications in the presence of frameworks
and libraries. In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 499-509, 2013.

James W. Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deter-
ministic capture and replay for JavaScript applications. In USENIX
Symposium on Networked Systems Design and Implementation, pages
159-174, 2010.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. Detecting
JavaScript races that matter. In ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, pages 381-392, 2015.

Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards,
and Brad Calder. Automatically classifying benign and harmful data
races using replay analysis. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 22-31, 2007.

Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing
atomicity violation bugs from their hiding places. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 25-36, 2009.

Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby.
Race detection for web applications. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 251-262,

2012.
Veselin Raychev, Martin T. Vechev, and Manu Sridharan. Effective race

detection for event-driven programs. In ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications,
pages 151-166, 2013.

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The
eval that men do - A large-scale study of the use of eval in JavaScript
applications. In European Conference on Object-Oriented Programming,
pages 52-78, 2011.

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. Gen-
erating data race witnesses by an SMT-based analysis. In NASA Formal
Methods, pages 313-327, 2011.

Koushik Sen. Race directed random testing of concurrent programs. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, pages 11-21, 2008.

Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. Predictive
analysis for detecting serializability violations through trace segmenta-
tion. In International Conference on Formal Methods and Models for
Co-Design, pages 99-108, 2011.

Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. PENELOPE:
Weaving threads to expose atomicity violations. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 37-46, 2010.

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schifer, and Frank
Tip. Correlation tracking for points-to analysis of JavaScript. In
European Conference on Object-Oriented Programming, pages 435—
458, 2012.

Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. Static
DOM event dependency analysis for testing web applications. In ACM
SIGSOFT Symposium on Foundations of Software Engineering, 2016.

Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided
systematic concurrency testing. In International Conference on Software
Engineering, pages 221-230, 2011.

Chao Wang, Yu Yang, Aarti Gupta, and Ganesh Gopalakrishnan. Dy-
namic model checking with property driven pruning to detect race
conditions. In International Symposium on Automated Technology for
Verification and Analysis, pages 126-140, 2008.

Weihang Wang, Yunhui Zheng, Peng Liu, Lei Xu, Xiangyu Zhang, and
Patrick Eugster. ARROW: Automated repair of races on client-side web
pages. In International Symposium on Software Testing and Analysis,
2016.

Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically locating
web application bugs caused by asynchronous calls. In International

Conference on World Wide Web, pages 805-814, 2011.

